Skip to main content

Artificial Neural Network Modelling of Reverse Electrodialysis

  • Conference paper
  • First Online:
Emerging Materials and Technologies in Water Remediation and Sensing (ICWT 2022)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 439))

Included in the following conference series:

  • 85 Accesses

Abstract

Reverse electrodialysis (RED) is an emerging technology with the potential to generate energy from salinity power gradients with limited environmental pollution. In a salinity-gradient power generator (SGP-RED), cation and anion exchange membranes are stacked alternately and due to the difference in concentrations of river and seawater, the diffusion of ions generates an electrochemical potential. In this work, a data-driven approach has been adopted for predicting the performance (Power Density) of SGP-RED power generators over different operating conditions and membrane types, using Artificial Neural Network (ANN) models. Experimental data was gathered and mined from 130 research publications from the last ten years to predict the output Power density of the system against a set of nine input parameters, e.g. membrane types, thickness, resistance, current density, perm selectivity, temperature, etc. A simple mathematical model to estimate the Power density is proposed and used to validate the experimental data before using them with ANN. We used ANN models using Bayesian Regularisation as the backpropagation algorithm (ANN-BR) along with a combination of six sets of pair-wise activation functions amongst Tan-sigmoid, Log-Sigmoid and Linear, in hidden and output layers. The ANN-BR model with Tan-Sigmoid activation functions in both hidden and output layers is shown to predict most accurately the Power density of the SGP-RED system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mehdizadeh, S., Kakihana, Y., Abo, T., Yuan, Q., Higa, M.: Power generation performance of a pilot-scale reverse electrodialysis using monovalent selective ion-exchange membranes. Membr. 11(1), 27 (2021)

    Article  CAS  Google Scholar 

  2. Długołęcki, P., Nymeijer, K., Metz, S., Wessling, M.: Current status of ion exchange membranes for power generation from salinity gradients. J. Membr. Sci. 319, 214–222 (2008)

    Google Scholar 

  3. Garoosiha, H., Ahmadi, J., Bayat, H., Formisano, A.: The assessment of levenberg–marquardt and bayesian framework training algorithm for prediction of concrete shrinkage by the artificial neural network. Cogent Eng. 6(1) (2019)

    Google Scholar 

  4. Krakhella, K.W., Bock, R., Burheim, O.S., Seland, F., Einarsrud, K.E.: Heat to H2: using waste heat for hydrogen production through reverse electrodialysis. Energies 12(18), 3428 (2019)

    Article  CAS  Google Scholar 

  5. Hatzell, M.C., Zhu, X., Logan, B.E.: Simultaneous hydrogen generation and waste acid neutralization in a reverse electrodialysis system. ACS Sustain. Chem. & Eng. 2(9), 2211–2216 (2014)

    Article  CAS  Google Scholar 

  6. Tufa, R.A., Hnát, J., Němeček, M., Kodým, R., Curcio, E., Bouzek, K.: Hydrogen production from industrial wastewaters: an integrated reverse electrodialysis-water electrolysis energy system. J. Clean. Prod. 203, 418–426 (2018)

    Article  CAS  Google Scholar 

  7. Skilbred, E.S., Krakhella, K.W., Haga, I.J.M., Pharoah, J.G., Hillestad, M., del Alamo Serrano, G., Burheim, O.S.: Heat to h2: using waste heat to set up concentration differences for reverse electrodialysis hydrogen production. ECS Trans. 85(13), 147 (2018)

    Article  CAS  Google Scholar 

  8. Chen, X., Jiang, C., Shehzad, M.A., Wang, Y., Feng, H., Yang, Z., Xu, T.: Water-dissociation-assisted electrolysis for hydrogen production in a salinity power cell. ACS Sustain. Chem. & Eng. 7(15), 13023–13030 (2019)

    Article  CAS  Google Scholar 

  9. Liu, B., Zhang, L., Xiong, W., Ma, M.: Cobalt-nanocrystal-assembled hollow nanoparticles for electrocatalytic hydrogen generation from neutral-pH water. Angew. Chem. 128(23), 6837–6841 (2016)

    Article  ADS  Google Scholar 

  10. Han, J.H., Kim, H., Hwang, K.S., Jeong, N., Kim, C.S.: Hydrogen production from water electrolysis driven by high membrane voltage of reverse electrodialysis. J. Electrochem. Sci. Technol. 10(3), 302–312 (2019)

    Article  CAS  Google Scholar 

  11. Nam, J.Y., Cusick, R.D., Kim, Y., Logan, B.E.: Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution. Environ. Sci. Technol. 46(9), 5240–5246 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Watson, V.J., Hatzell, M., Logan, B.E.: Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation wastewater. Biores. Technol. 195, 51–56 (2015)

    Article  CAS  Google Scholar 

  13. Luo, X., Nam, J.Y., Zhang, F., Zhang, X., Liang, P., Huang, X., Logan, B.E.: Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Biores. Technol. 140, 399–405 (2013)

    Article  CAS  Google Scholar 

  14. Zhu, X., Kim, T., Rahimi, M., Gorski, C.A., Logan, B.E.: Integrating reverse-electrodialysis stacks with flow batteries for improved energy recovery from salinity gradients and energy storage. Chemsuschem 10(4), 797–803 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. Kingsbury, R.S., Chu, K., Coronell, O.: Energy storage by reversible electrodialysis: the concentration battery. J. Membr. Sci. 495, 502–516 (2015)

    Article  CAS  Google Scholar 

  16. Kim, D.H., Park, B.H., Kwon, K., Li, L., Kim, D.: Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery. Appl. Energy 189, 201–210 (2017)

    Article  CAS  Google Scholar 

  17. Palenzuela, P., Micari, M., Ortega-Delgado, B., Giacalone, F., Zaragoza, G., Alarcón-Padilla, D.C., Micale, G.: Performance analysis of a RED-MED salinity gradient heat engine. Energ. 11(12), 3385 (2018)

    Google Scholar 

  18. Olkis, C., Santori, G., Brandani, S.: An adsorption reverse electrodialysis system for the generation of electricity from low-grade heat. Appl. Energy 231, 222–234 (2018)

    Article  CAS  Google Scholar 

  19. Stone, M.L., Rae, C., Stewart, F.F., Wilson, A.D.: Switchable polarity solvents as draw solutes for forward osmosis. Desalination 312, 124–129 (2013)

    Article  CAS  Google Scholar 

  20. Mercer, E., Davey, C.J., Azzini, D., Eusebi, A.L., Tierney, R., Williams, L., McAdam, E.J.: Hybrid membrane distillation reverse electrodialysis configuration for water and energy recovery from human urine: an opportunity for off-grid decentralised sanitation. J. Membr. Sci. 584, 343–352 (2019)

    Google Scholar 

  21. Long, R., Li, B., Liu, Z., Liu, W.: Hybrid membrane distillation-reverse electrodialysis electricity generation system to harvest low-grade thermal energy. J. Membr. Sci. 525, 107–115 (2017)

    Article  CAS  Google Scholar 

  22. Micari, M., Cipollina, A., Giacalone, F., Kosmadakis, G., Papapetrou, M., Zaragoza, G., Tamburini, A.: Towards the first proof of the concept of a reverse electroDialysis-membrane distillation heat engine. Desalination. 453, 77–88 (2019)

    Google Scholar 

  23. Zhu, X., He, W., Logan, B.E.: Influence of solution concentration and salt types on the performance of reverse electrodialysis cells. J. Membr. Sci. 494, 154–160 (2015)

    Article  CAS  Google Scholar 

  24. Geise, G.M., Cassady, H.J., Paul, D.R., Logan, B.E., Hickner, M.A.: Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys. Chem. Chem. Phys. 16(39), 21673–21681 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Li, W., Krantz, W.B., Cornelissen, E.R., Post, J.W., Verliefde, A.R., Tang, C.Y.: A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Appl. Energy 104, 592–602 (2013)

    Article  CAS  Google Scholar 

  26. Tedesco, M., Cipollina, A., Tamburini, A., van Baak, W., Micale, G.: Modelling the reverse electroDialysis process with seawater and concentrated brines. Desalin. Water Treat. 49(1–3), 404–424 (2012)

    Article  CAS  Google Scholar 

  27. Brauns, E.: Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power? Desalination 219(1–3), 312–323 (2008)

    Article  CAS  Google Scholar 

  28. Hall, A.N.: Outline of a new thermodynamic model of energetic fuel-coolant interactions. Nucl. Eng. Des. 109(3), 407–415 (1988)

    Article  CAS  Google Scholar 

  29. Kwon, K., Han, J., Park, B.H., Shin, Y., Kim, D.: Brine recovery using reverse electrodialysis in membrane-based desalination processes. Desalination 362, 1–10 (2015)

    Article  CAS  Google Scholar 

  30. Vermaas, D.A., Saakes, M., Nijmeijer, K.: Power generation using profiled membranes in reverse electrodialysis. J. Membr. Sci. 385, 234–242 (2011)

    Article  Google Scholar 

  31. Farrell, E., Hassan, M.I., Tufa, R.A., Tuomiranta, A., Avci, A.H., Politano, A., Arafat, H.A.: Reverse electrodialysis powered greenhouse concept for water-and energy-self-sufficient agriculture. Appl. Energy, 187, 390–409 (2017)

    Google Scholar 

  32. Mehdizadeh, S., Yasukawa, M., Kuno, M., Kawabata, Y., Higa, M.: Evaluation of energy harvesting from discharged solutions in a salt production plant by reverse electrodialysis (RED). Desalination 467, 95–102 (2019)

    Article  CAS  Google Scholar 

  33. Zhou, Y., Zhao, K., Hu, C., Liu, H., Wang, Y., Qu, J.: Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis. Electrochim. Acta 269, 128–135 (2018)

    Article  CAS  Google Scholar 

  34. Nazif, A., Karkhanechi, H., Saljoughi, E., Mousavi, S.M., Matsuyama, H.: Recent progress in membrane development, affecting parameters, and applications of reverse electrodialysis: a review. J. Water Process. Eng. 47, 102706 (2022)

    Article  Google Scholar 

  35. Kwon, K., Park, B.H., Kim, D.H., Kim, D.: Comparison of spacer-less and spacer-filled reverse electrodialysis. JJ. Renew. Sustain. Energy 9(4), 044502 (2017)

    Article  Google Scholar 

  36. Pintossi, D., Simões, C., Saakes, M., Borneman, Z., Nijmeijer, K.: Predicting reverse electrodialysis performance in the presence of divalent ions for renewable energy generation. Energy Convers. Manage. 243, 114369 (2021)

    Article  CAS  Google Scholar 

  37. Güler, E., Elizen, R., Vermaas, D.A., Saakes, M., Nijmeijer, K.: Performance-determining membrane properties in reverse electrodialysis. J. Membr. Sci. 446, 266–276 (2013)

    Article  Google Scholar 

  38. Altıok, E., Kaya, T.Z., Güler, E., Kabay, N., Bryjak, M.: Performance of reverse electrodialysis system for salinity gradient energy generation by using a commercial ion exchange membrane pair with homogeneous bulk structure. Water 13(6), 814 (2021)

    Article  Google Scholar 

  39. Ju, J., Choi, Y., Lee, S., Kim, H., Jung, N.: Effect of design and operating parameters on power generation in reverse electrodialysis (RED): experimental analysis and modeling. Desalination Water Treat. 191, 29–39 (2020)

    Article  CAS  Google Scholar 

  40. Rath, R., Dutta, D., Kamesh, R., Sharqawy, M.H., Moulik, S., Roy, A.: Rational design of high power density “blue energy harvester” pressure retarded osmosis (PRO) membranes using artificial intelligence-based modeling and optimization. Energy Convers. Manage. 253, 115160 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Anirban Roy for guiding us throughout and Rudra Rath for helping me in every step of the way. This project would not have been possible without their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shruti Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sen, S., Rath, R., Kamesh, R., Roy, A. (2024). Artificial Neural Network Modelling of Reverse Electrodialysis. In: Saxena, S., Shukla, S., Mural, P.K.S. (eds) Emerging Materials and Technologies in Water Remediation and Sensing. ICWT 2022. Lecture Notes in Civil Engineering, vol 439. Springer, Singapore. https://doi.org/10.1007/978-981-99-6762-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6762-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6761-2

  • Online ISBN: 978-981-99-6762-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics