Skip to main content

Autonomous Navigation of Tracked Robot in Uneven Terrains

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14274))

Included in the following conference series:

  • 432 Accesses

Abstract

Since microdosing of chemical, biological, radiological, and nuclear (CBRN) contaminants is enough to cause great damage to humans, operating robots are widely used to handle CBRN-related tasks. However, how to improve the automation capabilities of these robots in uneven environments, such as autonomous navigation, is still a huge challenge. Current navigation methods usually set the scene as flat pavement, without considering the situation that the land slope exceeds a certain threshold. In order to explore ways of autonomous navigation in uneven environments, a 3D path planning and navigation method for the tracked robot is proposed in this paper, respecting applicable traversability constraints in uneven terrains. Firstly, a 3D graph-based map is built according to the occupancy map of the uneven environment. A set of spatial points, ensuring collision-avoidance of the robot, is randomly sampled in free space, and a vertex map is generated based on these vertices for robot traversing. Then, regarding the robot’s climbing and obstacle crossing ability as constraints, a path planning algorithm is used to search for the best path based on the Dijkstra algorithm. Finally, a fusion SLAM method based on LiDAR, IMU and RGB-D camera is used to achieve real-time localization, and the pure pursuit algorithm is used for navigation. The simulation results show that the proposed method can provide a safe and effective 3D path for the tracked robot and enable the robot’s autonomous navigation in uneven environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsitsimpelis, I., Taylor, C.J., Lennox, B., Joyce, M.J.: A review of ground-based robotic systems for the characterization of nuclear environments. Prog. Nucl. Energy 111(3), 109–124 (2019)

    Article  Google Scholar 

  2. Chang, F., et al.: Research status and key technologies analysis of operating robots for nuclear environment. Opto Electron. Eng. 47(10), 200338 (2020)

    Google Scholar 

  3. Yang, L., Qi, J., Song, D., Xiao, J., Han, J., Xia, Y.: Survey of robot 3D path planning algorithms. J. Control Sci. Eng. 2016, 1–22 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Guzman, R., Navarro, R., Ferre, J., Moreno, M.: Rescuer: development of a modular chemical, biological, radiological, and nuclear robot for intervention, sampling, and situation awareness. J. Field Robot. 33(7), 931–945 (2016)

    Article  Google Scholar 

  5. Liu, X., Cheng, L., Yang, Y., Yan, G., Xu, X., Zhang, Z.: An alpha/beta radiation mapping method using simultaneous localization and mapping for nuclear power plants. Machines 10(9), 800 (2022)

    Google Scholar 

  6. Huang, Y., Shi, X., Zhou, Y., Xiong, Z.: Autonomous navigation of mobile robot in radiation environment with uneven terrain. Int. J. Intell. Robot. Appl. (2022)

    Google Scholar 

  7. Lazna, T., Fisera, O., Kares, J., Zalud, L.: Localization of ionizing radiation sources via an autonomous robotic system. Radiat. Prot. Dosimetry. 186(2–3), 249–256 (2019)

    Article  Google Scholar 

  8. Jonasson, E.T., et al.: Reconstructing JET using LIDAR-vision fusion. Fusion Eng. Des. 146, 110952 (2019)

    Article  Google Scholar 

  9. Chen, C., Cai, J., Wang, Z., Chen, F., Yi, W.: An improved A* algorithm for searching the minimum dose path in nuclear facilities. Prog. Nucl. Energy 126, 103394 (2020)

    Article  Google Scholar 

  10. Chao, N., Liu, Y.-K., Xia, H., Ayodeji, A., Bai, L.: Grid-based RRT* for minimum dose walking path-planning in complex radioactive environments. Ann. Nucl. Energy 115, 73–82 (2018)

    Article  Google Scholar 

  11. Wang, C., et al.: Autonomous mobile robot navigation in uneven and unstructured indoor environments. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 109–116 (2017)

    Google Scholar 

  12. Kulkarni, M., et al.: Autonomous teamed exploration of subterranean environments using legged and aerial robots. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 3306–3313 (2022)

    Google Scholar 

  13. Atas, F., Grimstad, L., Cielniak, G.: Evaluation of Sampling-Based Optimizing Planners for Outdoor Robot Navigation. arXiv preprint arXiv:2103.13666 (2021)

  14. Neubert, P., Schubert, S., Protzel, P.: Sampling-based methods for visual navigation in 3D maps by synthesizing depth images. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2492–2498 (2017)

    Google Scholar 

  15. Ratnayake, K., Sooriyaarachchi, S., Gamage, C.: OENS: an octomap based exploration and navigation system. In: 2021 5th International Conference on Robotics and Automation Sciences (ICRAS), pp. 230–234 (2021)

    Google Scholar 

  16. Maier, D., Hornung, A., Bennewitz, M.: Real-time navigation in 3D environments based on depth camera data. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 692–697 (2012)

    Google Scholar 

  17. Tsiakas, K., Kostavelis, I., Gasteratos, A., Tzovaras, D.: Autonomous vehicle navigation in semi-structured environments based on sparse waypoints and LiDAR road-tracking. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1244–1250 (2021)

    Google Scholar 

  18. Pfeiffer, M., Schaeuble, M., Nieto, J., Siegwart, R., Cadena, C.: From perception to decision: a data-driven approach to end-to-end motion planning for autonomous ground robots. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1527–1533 (2017)

    Google Scholar 

  19. Weerakoon, K., Sathyamoorthy, A.J., Patel, U., Manocha, D.: TERP: reliable planning in uneven outdoor environments using deep reinforcement learning. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 9447–9453 (2022)

    Google Scholar 

  20. Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., Rus, D.: LIO-SAM: tightly-coupled lidar inertial odometry via smoothing and mapping. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5135–5142 (2020)

    Google Scholar 

  21. Zhang, J., Singh, S.: Low-drift and real-time lidar odometry and mapping. Auton. Robot. 41(2), 401–416 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work is jointly supported by National Natural Science Foundation of China (U1813224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjun Sheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, G., Shi, J., Liu, C., Guo, W., Sheng, X. (2023). Autonomous Navigation of Tracked Robot in Uneven Terrains. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14274. Springer, Singapore. https://doi.org/10.1007/978-981-99-6501-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6501-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6500-7

  • Online ISBN: 978-981-99-6501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics