Skip to main content

Highly Compressible and Stretchable Piezoresistive Sensor Based 3D Graphene-Melamine Composite Foam for Gait Motion Detection

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14268))

Included in the following conference series:

  • 436 Accesses

Abstract

High-performance piezoresistive sensors that are stretchable, compressible, and ultralight have fueled significant interest in gait motion detection. However, developing a highly sensitive, low-cost sensor with ultralow detection and excellent mechanical stability for sensitive body flexion monitoring is a significant challenge. To address the aforementioned challenges, a stretchable and compressible piezoresistive pressure sensor is fabricated by embedding multilayer graphene (Gr) nanoparticles into the porosity of melamine foam (MF). The graphene melamine nanocomposite foam (GMNCF) is prepared by soaking the MF in a dissolved dispersion of Gr. The as-fabricated GMNCF piezoresistive sensors featured sensitivities ranging between, 0.11–8.21 kPa−1 in pressure ranges between 0–0.03 kPa, as well as excellent durability over a long period of time (1000 s). The device can effectively detect gait motions such as jogging, walking, running, heel striking, foot flat, and toes-off due to its strong piezoresistive sensing capabilities. Our results showcase the potential application of GMNCF, as a wearable device for monitoring human motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Z., Si, T.: Controllable assembly of silver nanoparticles based on the coffee-ring effect for high-sensitivity flexible strain gauges. Sens. Actuators, A 264, 188–194 (2017)

    Article  Google Scholar 

  2. Lee, Y.H., et al.: High-performance hybrid photovoltaics with efficient interfacial contacts between vertically aligned ZnO nanowire arrays and organic semiconductors. ACS omega 4(6), 9996–10002. https://doi.org/10.1021/acsomega.9b00778 Available: http://europepmc.org/abstract/MED/31460092, https://europepmc.org/articles/PMC6648691, https://europepmc.org/articles/PMC6648691?pdf=render Accessed Jun 2019

  3. Liu, H., et al.: Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8(26), 12977–12989 (2016). https://doi.org/10.1039/C6NR02216B

    Article  Google Scholar 

  4. Romarís, L.H.,et al.: Multifunctional electromechanical and thermoelectric polyaniline–poly(vinyl acetate) latex composites for wearable devices. J. Mater. Chem. C 6(31), 8502–8512 (2018). https://doi.org/10.1039/C8TC02327A

  5. Cai, B., et al.: Compressible piezoresistive pressure sensor based on Ag nanowires wrapped conductive carbonized melamine foam. Appl. Phys. A 128(1), 6 (2021)

    Article  Google Scholar 

  6. Fragkogiannis, C., Koutsioukis, A., Georgakilas, V.: Highly elastic melamine graphene/MWNT hybrid sponge for sensor applications. Molecules 27(11), 3530 (2022)

    Article  Google Scholar 

  7. Canavese, G., Stassi, S., Stralla, M., Bignardi, C., Pirri, C.F.: Stretchable and conformable metal–polymer piezoresistive hybrid system. Sens. Actuators, A 186(2), 191–197 (2012)

    Article  Google Scholar 

  8. Ge, G., et al.: A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 10(21), 10033–10040 (2018). https://doi.org/10.1039/C8NR02813C

    Article  Google Scholar 

  9. Liu, Q., Chen, J., Li, Y., Shi, G.: “High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions”, (in eng). ACS Nano 10(8), 7901 (2016)

    Article  Google Scholar 

  10. Kurup, L.A., Cole, C.M., Arthur, J.N., Yambem, S.D.: Graphene porous foams for capacitive pressure sensing. ACS Appl. Nano Mater. 5(2), 2973–2983 (2022)

    Article  Google Scholar 

  11. Lu, P., Wu, X., Guo, W., Zeng, X.C.: Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 14(37), 13035–13040 (2012). https://doi.org/10.1039/C2CP42181J

    Article  Google Scholar 

  12. Li, B., et al.: Tribological behaviour of acrylonitrile-butadiene rubber under thermal oxidation ageing. Polym. Testing 93(2), 106954 (2021)

    Article  MathSciNet  Google Scholar 

  13. Georgopoulou, Clemens, F.: Piezoresistive elastomer-based composite strain sensors and their applications. ACS Appl. Electron. Mater. 2(7), 1826–1842 (2020)

    Article  Google Scholar 

  14. Cheng, L., Wang, R., Hao, X., Liu, G.: Design of flexible pressure sensor based on conical microstructure PDMS-bilayer graphene. Sensors 21(1), 289 (2021)

    Article  Google Scholar 

  15. Ding, Y., Xu, T., Onyilagha, O., Fong, H., Zhu, Z.: “Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges”, (in eng). ACS Appl. Mater. Interfaces 11(7), 6685–6704 (2019)

    Article  Google Scholar 

  16. Pang, Z.P., et al.: Induction of human neuronal cells by defined transcription factors. Nature 476(7359), 220–223 (2011)

    Article  Google Scholar 

  17. Zhou, J., Yu, H., Xu, X., Han, F., Lubineau, G.: Ultrasensitive, stretchable strain sensors based on fragmented carbon nanotube papers. ACS Appl. Mater. Interfaces 9(5), 4835–4842 (2017)

    Article  Google Scholar 

  18. Iglio, R., Mariani, S., Robbiano, V., Strambini, L., Barillaro, G.: “Flexible polydimethylsiloxane foams decorated with multiwalled carbon nanotubes enable unprecedented detection of ultralow strain and pressure coupled with a large working range”, (in eng). ACS Appl. Mater. Interfaces 10(16), 13877–13885 (2018)

    Article  Google Scholar 

  19. Zhou, S., et al.: Strength-toughness combination in nickel matrix composites reinforced by hybrid graphene nanoplatelets-titanium diboride. Carbon 201, 1137–1148 (2023)

    Article  Google Scholar 

  20. Krishnan, S.K., Singh, E., Singh, P., Meyyappan, M., Nalwa, H.S.: A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 9(16), 8778–8881 (2019). https://doi.org/10.1039/C8RA09577A

    Article  Google Scholar 

  21. Kim, E., et al.: Solvent-responsive polymernanocapsules with controlled permeability: encapsulation and release of a fluorescent dye by swelling and deswelling. Chem. Commun. 12, 1472–1474 (2009). https://doi.org/10.1039/B823110A

    Article  Google Scholar 

  22. Wang, J., et al.: Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 11(12), 3375–3379 (2018). https://doi.org/10.1039/C8EE02656D

    Article  Google Scholar 

  23. Ha, M., Lim, S., Ko, H.: Wearable and flexible sensors for user-interactive health-monitoring devices. J. Mater. Chem. B 6(24), 4043–4064 (2018). https://doi.org/10.1039/C8TB01063C

    Article  Google Scholar 

  24. Ho, D.H., Sun, Q., Kim, S.Y., Han, J.T., Kim, D.H., Cho, J.H.: “Stretchable and multimodal all graphene electronic skin”, (in eng). Adv. Mater. 28(13), 2601–2608 (2016)

    Article  Google Scholar 

  25. Liu, H., et al.: Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C 5(1), 73–83 (2017). https://doi.org/10.1039/C6TC03713E

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Jiang or Mei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Owusu, E.K., Djoulde, A., Jiang, Z., Liu, M. (2023). Highly Compressible and Stretchable Piezoresistive Sensor Based 3D Graphene-Melamine Composite Foam for Gait Motion Detection. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14268. Springer, Singapore. https://doi.org/10.1007/978-981-99-6486-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6486-4_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6485-7

  • Online ISBN: 978-981-99-6486-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics