Skip to main content

Map Smoothing Method for Map Distortion with Localization Error

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14267))

Included in the following conference series:

  • 449 Accesses

Abstract

This paper presents a global map smoothing method to reduce the adverse impact of localization errors on the map. The errors along the direction of the ground normal vector will lead to map distortion, for example an undulating or stepped ground in the map. This type of error is difficult to be eliminated in visual or LiDAR odometry technically. The flat ground constraints are usually added to the odometry stage of SLAM to figure out above problem in structured scenes like urban road or indoor environments. However, it does not fit most of unstructured scenarios, such as the desert or the forest. Instead of solving this type of localization error, a global map smoothing method is proposed in our paper to improve the mapping accuracy. The matching method is applied between two a local map and the corresponding submap extracted from the global map. The pose correction is computed and then is applied to correct the local map. Finally, the corrected local map is fused into the global map. Demonstration is performed in our experimental environment and open source dataset, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlevaris-Bianco, N., Ushani, A.K., Eustice, R.M.: University of Michigan north campus long-term vision and lidar dataset. Int. J. Robot. Res. 35(9), 1023–1035 (2015)

    Article  Google Scholar 

  2. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223 (2016)

    Google Scholar 

  3. Debeunne, C., Vivet, D.: A review of visual-lidar fusion based simultaneous localization and mapping. Sensors 20(7), 2068 (2020)

    Article  Google Scholar 

  4. Dissanayake, M.G., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A solution to the simultaneous localization and map building (slam) problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (2001)

    Article  Google Scholar 

  5. Fankhauser, P., Bloesch, M., Gehring, C., Hutter, M., Siegwart, R.: Robot-centric elevation mapping with uncertainty estimates. In: International Conference on Climbing and Walking Robots (CLAWAR) (2014)

    Google Scholar 

  6. Fankhauser, P., Bloesch, M., Hutter, M.: Probabilistic terrain mapping for mobile robots with uncertain localization. IEEE Robot. Autom. Lett. 3(4), 3019–3026 (2018)

    Article  Google Scholar 

  7. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32(1), 1231–1237 (2013)

    Article  Google Scholar 

  8. Macario Barros, A., Michel, M., Moline, Y., Corre, G., Carrel, F.: A comprehensive survey of visual slam algorithms. Robotics 11(1), 24 (2022)

    Article  Google Scholar 

  9. Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 year, 1000 km: the oxford RobotCar dataset. Int. J. Robot. Res. 36(1), 3–15 (2017)

    Article  Google Scholar 

  10. Pan, Y., Xu, X., Ding, X., Huang, S., Wang, Y., Xiong, R.: Gem: online globally consistent dense elevation mapping for unstructured terrain. IEEE Trans. Instrum. Meas. 70, 1–13 (2021)

    Google Scholar 

  11. Pan, Y., Xu, X., Wang, Y., Ding, X., Xiong, R.: GPU accelerated real-time traversability mapping. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 734–740. IEEE (2019)

    Google Scholar 

  12. Qin, T., Cao, S., Pan, J., Shen, S.: A general optimization-based framework for global pose estimation with multiple sensors. arxiv.org/abs/1901.03642 (2019)

  13. Smith, M., Baldwin, I., Churchill, W., Paul, R., Newman, P.: The new college vision and laser data set. Int. J. Robot. Res. 28(5), 595–599 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. U21B6001), and Center-initialized Research Project of Zhejiang Lab (No. 2021NB0AL02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuehua Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Zhu, S., Li, Y. (2023). Map Smoothing Method for Map Distortion with Localization Error. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14267. Springer, Singapore. https://doi.org/10.1007/978-981-99-6483-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6483-3_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6482-6

  • Online ISBN: 978-981-99-6483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics