Skip to main content

Artificial Intelligence (AI) and Machine Learning (ML): An Innovative Cross-Talk Perspective and Their Role in the Healthcare Industry

  • Chapter
  • First Online:
Artificial Intelligence and Machine Learning in Healthcare

Abstract

From its widespread use in improving diagnostic accuracy to its applications in treatment recommendations, patient engagement and adherence, health services management, predictive analysis and neural networks, AI has created tremendous opportunities in the healthcare field. Its use, however, is limited by lack of awareness, proliferation of misinformation regarding AI applications, limited validation studies and inherent limitations associated with the collection and sharing of healthcare data. Regardless of whether the algorithms are usefully scalable, the most difficult task for AI in the healthcare industry is to sustain its use in routine clinical practice. Because screening and diagnostic AI technologies now possess the ability to radically transform the healthcare landscape, having a clear understanding of how these tools are presented to the public is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N., & Folk, J. C. (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digital Medicine, 1, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Accolade.com. Retrieved November 01, 2022, from https://www.accolade.com/

  • Accolade.com. Getting employees the right care at the right time to improve outcomes and reduce costs. Retrieved November 01, 2022, from https://d10j0m6hqftivr.cloudfront.net/TUHS-Accolade-CaseStudy_March2018.pdf

  • Addepto.com. Artificial intelligence in health insurance: Smart claims management. Retrieved November 01, 2022, from https://addepto.com/blog/artificial-intelligence-in-health-insurance-smart-claims-management/

  • Adepto.com. (2020). Artificial intelligence in health insurance: Smart claims management. https://addepto.com/blog/artificial-intelligence-in-health-insurance-smart-claims-management/

  • Aggarwal, N., Ahmed, M., Basu, S., Curtin, J. J., Evans, B. J., Matheny, M. E., Nundy, S., Sendak, M. P., Shachar, C., Shah, R. U., & Thadaney-Israni, S. (2020). Advancing artificial intelligence in health settings outside the hospital and clinic. NAM Perspect.

    Google Scholar 

  • Agrebi, S., & Larbi, A. (2020). Chapter 18—Use of artificial intelligence in infectious diseases. In D. Barh (Ed.), Artificial intelligence in precision health. Academic Press.

    Google Scholar 

  • Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database (Oxford).

    Google Scholar 

  • Ahsan, M. M., Luna, S. A., & Siddique, Z. (2022). Machine-learning-based disease diagnosis: A comprehensive review. Healthcare (Basel), 10.

    Google Scholar 

  • Ahuja, A. S. (2019). The impact of artificial intelligence in medicine on the future role of the physician. PeerJ, 7, e7702.

    Google Scholar 

  • Alemayehu, D., Hemmings, R., Natarajan, K., & Roychoudhury, S. (2022). Perspectives on virtual (remote) clinical trials as the “new normal” to accelerate drug development. Clinical Pharmacology & Therapeutics, 111, 373–381.

    Google Scholar 

  • Alugubelli, N., Abuissa, H., & Roka, A. (2022). Wearable devices for remote monitoring of heart rate and heart rate variability—What we know and what is coming. Sensors, 22, 8903.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alzu’Bi, A. A., Watzlaf, V. J. M., & Sheridan, P. (2021). Electronic health record (EHR) abstraction. Perspectives in Health Information Management, 18, 1g.

    PubMed  PubMed Central  Google Scholar 

  • Aparoy, P., Reddy, K. K., & Reddanna, P. (2012). Structure and ligand based drug design strategies in the development of novel 5-LOX inhibitors. Current Medicinal Chemistry, 19, 3763–3778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aronson, S. J., & Rehm, H. L. (2015). Building the foundation for genomics in precision medicine. Nature, 526, 336–342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arora, G., Joshi, J., Mandal, R. S., Shrivastava, N., Virmani, R., & Sethi, T. (2021). Artificial intelligence in surveillance, diagnosis, drug discovery and vaccine development against COVID-19. Pathogens, 10.

    Google Scholar 

  • Azati.com. Uniting experts to fulfil important projects. Retrieved November 01, 2022, from https://azati.ai/

  • Azencott, C. A. (2018). Machine learning and genomics: Precision medicine versus patient privacy. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, 376.

    Google Scholar 

  • Babel, A., Taneja, R., Mondello Malvestiti, F., Monaco, A., & Donde, S. (2021). Artificial intelligence solutions to increase medication adherence in patients with non-communicable diseases. Frontiers in Digital Health, 3, 669869.

    Google Scholar 

  • Bai, L., Yang, J., Chen, X., Sun, Y., & Li, X. (2019). Medical robotics in bone fracture reduction surgery: A review. Sensors, 19, 3593.

    Article  PubMed  PubMed Central  Google Scholar 

  • Balogh, E. P., Miller, B. T., & Ball, J. R. (2015). Committee on diagnostic error in health care. In E. P. Balogh, B. T. Miller, & J. R. Ball (Eds.), Improving diagnosis in health care. National Academies Press (US) Copyright 2015 by the National Academy of Sciences. All rights reserved.

    Google Scholar 

  • Batool, M., Ahmad, B., & Choi, S. (2019). A structure-based drug discovery paradigm. International Journal of Molecular Sciences, 20.

    Google Scholar 

  • Beasley, R. A. (2012). Medical robots: Current systems and research directions. Journal of Robotics, 2012, 401613.

    Google Scholar 

  • Bender, A., & Cortés-Ciriano, I. (2021). Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discovery Today, 26, 511–524.

    Article  PubMed  Google Scholar 

  • Beneke, F., & Mackenrodt, M.-O. (2019). Artificial intelligence and collusion. IIC - International Review of Intellectual Property and Competition Law, 50, 109–134.

    Article  Google Scholar 

  • Bodenheimer, T., Wagner, E. H., & Grumbach, K. (2002a). Improving primary care for patients with chronic illness. JAMA, 288, 1775–1779.

    Article  PubMed  Google Scholar 

  • Bodenheimer, T., Wagner, E. H., & Grumbach, K. (2002b). Improving primary care for patients with chronic illness: The chronic care model, Part 2. JAMA, 288, 1909–1914.

    Article  PubMed  Google Scholar 

  • Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. Artificial Intelligence in Healthcare, 2020, 25–60. https://doi.org/10.1016/B978-0-12-818438-7.00002-2. Epub 2020 June 26.

  • Briganti, G., & Le Moine, O. (2020). Artificial intelligence in medicine: Today and tomorrow. Frontiers in Medicine, 7, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bush, J (2018). How AI is taking the scut work out of health care. Harvard Business Review, 5.

    Google Scholar 

  • Butow, P., & Hoque, E. (2020). Using artificial intelligence to analyse and teach communication in healthcare. Breast, 50, 49–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabrita, M., op den Akker, H., Tabak, M., Hermens, H. J., & Vollenbroek-Hutten, M. M. R. (2018). Persuasive technology to support active and healthy ageing: An exploration of past, present, and future. Journal of Biomedical Informatics, 84, 17–30.

    Google Scholar 

  • Callaway, E. (2020). ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature, 588, 203–205.

    Google Scholar 

  • Carter, S. M. (2018). Valuing healthcare improvement: Implicit norms, explicit normativity, and human agency. Health Care Analysis, 26, 189–205.

    Google Scholar 

  • Carter, S. M., Rogers, W., Win, K. T., Frazer, H., Richards, B., & Houssami, N. J. T. B. (2020). The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. The Breast, 49, 25–32.

    Article  PubMed  Google Scholar 

  • Cebul, R. D., Love, T. E., Jain, A. K., & Hebert, C. J. (2011). Electronic health records and quality of diabetes care. New England Journal of Medicine, 365, 825–833.

    Article  PubMed  Google Scholar 

  • Chai, P. R., Rosen, R. K., & Boyer, E. W. (2016). Ingestible biosensors for real-time medical adherence monitoring: MyTMed. Proceedings of the Annual Hawaii International Conference on System Sciences, 2016, 3416–3423.

    PubMed  Google Scholar 

  • Chan, H. C. S., Shan, H., Dahoun, T., Vogel, H., & Yuan, S. (2019). Advancing drug discovery via artificial intelligence. Trends in Pharmacological Sciences, 40, 592–604.

    Article  PubMed  Google Scholar 

  • Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care—Addressing ethical challenges. New England Journal of Medicine, 378, 981–983.

    Article  PubMed  Google Scholar 

  • Chen, S., Xu, H., Liu, D., Hu, B., & Wang, H. (2014). A vision of IoT: Applications, challenges, and opportunities with China perspective. IEEE Internet of Things Journal, 1, 349–359.

    Article  Google Scholar 

  • Chen, Y., Elenee Argentinis, J. D., & Weber, G. (2016). IBM Watson: How cognitive computing can be applied to big data challenges in life sciences research. Clinical Therapeutics, 38, 688–701.

    Google Scholar 

  • Chen, Z. H., Lin, L., Wu, C. F., Li, C. F., Xu, R. H., & Sun, Y. (2021). Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Communications (London), 41, 1100–1115.

    Article  Google Scholar 

  • Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P.-M., Zietz, M., Hoffman, M. M., Xie, W., Rosen, G. L., Lengerich, B. J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A. E., Shrikumar, A., Xu, J., … Greene, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society, Interface, 15, 20170387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhury, A., & Asan, O. (2020). Role of artificial intelligence in patient safety outcomes: Systematic literature review. JMIR Medical Informatics, 8, e18599.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coiera, E. (2019). On algorithms, machines, and medicine. The Lancet Oncology, 20, 166–167.

    Google Scholar 

  • Collectivehealth.com. A health benefits solution that brings it all together. Retrieved November 01, 2022, from https://collectivehealth.com/

  • Corny, J., Rajkumar, A., Martin, O., Dode, X., Lajonchère, J. P., Billuart, O., Bézie, Y., & Buronfosse, A. (2020). A machine learning-based clinical decision support system to identify prescriptions with a high risk of medication error. Journal of the American Medical Informatics Association, 27, 1688–1694.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crema, C., Attardi, G., Sartiano, D., & Redolfi, A. (2022). Natural language processing in clinical neuroscience and psychiatry: A review. Frontiers in Psychiatry, 13, 946387.

    Article  PubMed  PubMed Central  Google Scholar 

  • da Costa, C. A., Pasluosta, C. F., Eskofier, B., da Silva, D. B., & da Rosa Righi, R. (2018). Internet of Health Things: Toward intelligent vital signs monitoring in hospital wards. Artificial Intelligence in Medicine, 89, 61–69.

    Google Scholar 

  • Darcy, A. M., Louie, A. K., & Roberts, L. W. (2016). Machine learning and the profession of medicine. JAMA, 315, 551–552.

    Article  PubMed  Google Scholar 

  • Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6, 94–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis, K., Stremikis, K., Squires, D., & Schoen, C. (2014). Mirror, mirror on the wall, 2014 update: How the US health care system compares internationally. The Commonwealth Fund, 16, 1–31.

    Google Scholar 

  • de Souza Neto, L. R., Moreira-Filho, J. T., Neves, B. J., Maidana, R. L. B. R., Guimarães, A. C. R., Furnham, N., Andrade, C. H., & Silva, F. P. (2020). In silico strategies to support fragment-to-lead optimization in drug discovery. Frontiers in Chemistry, 8.

    Google Scholar 

  • Dias, D., & Paulo Silva Cunha, J. (2018). Wearable health devices—Vital sign monitoring, systems and technologies. Sensors (Basel), 18.

    Google Scholar 

  • Dias, R., & Torkamani, A. (2019). Artificial intelligence in clinical and genomic diagnostics. Genome Medicine, 11, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Docsumo. (2022, October 31). Best insurance claims automation software in 2022. Retrieved November 01, 2022, from https://docsumo.com/blog/best-claim-automation-software#:~:text=Top%205%20insurance%20claims%20automation%20software%20in%20the,4%204.%20Kofax%20...%205%205.%20Hyperscience%20

  • Dorr, D., Bonner, L. M., Cohen, A. N., Shoai, R. S., Perrin, R., Chaney, E., & Young, A. S. (2007). Informatics systems to promote improved care for chronic illness: A literature review. Journal of the American Medical Informatics Association, 14, 156–163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Esmaeilzadeh, P. (2020). Use of AI-based tools for healthcare purposes: A survey study from consumers’ perspectives. BMC Medical Informatics and Decision Making, 20, 170.

    Google Scholar 

  • Exscientia. Exscientia: Precision design. Retrieved November 01, 2022, from https://www.exscientia.ai/precision-design

  • Fadhil, A. (2018). A conversational interface to improve medication adherence: Towards AI support in patient’s treatment. arXiv preprint arXiv.

    Google Scholar 

  • Farahmand, S., Shabestari, O., Pakrah, M., Hossein-Nejad, H., Arbab, M., & Bagheri-Hariri, S. (2017). Artificial intelligence-based triage for patients with acute abdominal pain in emergency department; a diagnostic accuracy study. Advanced Journal of Emergency Medicine, 1, e5.

    PubMed  PubMed Central  Google Scholar 

  • Fbi.gov. Insurance fraud. Retrieved November 01, 2022, from https://www.fbi.gov/stats-services/publications/insurance-fraud

  • Feinberg, E. N., Sur, D., Wu, Z., Husic, B. E., Mai, H., Li, Y., Sun, S., Yang, J., Ramsundar, B., & Pande, V. S. (2018). PotentialNet for molecular property prediction. ACS Central Science, 4, 1520–1530.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira, L. G., dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20, 13384–13421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferté, T., Cossin, S., Schaeverbeke, T., Barnetche, T., Jouhet, V., & Hejblum, B. P. (2021). Automatic phenotyping of electronical health record: PheVis algorithm. Journal of Biomedical Informatics, 117, 103746.

    Article  PubMed  Google Scholar 

  • Firouzi, F., Rahmani, A. M., Mankodiya, K., Badaroglu, M., Merrett, G. V., Wong, P., & Farahani, B. (2018). Internet-of-Things and big data for smarter healthcare: From device to architecture, applications and analytics. Future Generation Computer Systems, 78, 583–586.

    Article  Google Scholar 

  • Frankovich, J., Longhurst, C. A., & Sutherland, S. M. (2011). Evidence-based medicine in the EMR era. New England Journal of Medicine, 365, 1758–1759.

    Article  PubMed  Google Scholar 

  • Friedman, C., & Rigby, M. (2013). Conceptualising and creating a global learning health system. International Journal of Medical Informatics, 82, e63-71.

    Article  PubMed  Google Scholar 

  • Friedman, C. P., Wong, A. K., & Blumenthal, D. (2010). Achieving a nationwide learning health system. Science Translational Medicine, 2, 57cm29.

    Google Scholar 

  • Fu, Y., Luo, J., Qin, J., & Yang, M. (2019). Screening techniques for the identification of bioactive compounds in natural products. Journal of Pharmaceutical and Biomedical Analysis, 168, 189–200.

    Article  PubMed  Google Scholar 

  • Galiero, R., Pafundi, P. C., Nevola, R., Rinaldi, L., Acierno, C., Caturano, A., Salvatore, T., Adinolfi, L. E., Costagliola, C., & Sasso, F. C. (2020). The importance of telemedicine during COVID-19 pandemic: A focus on diabetic retinopathy. Journal of Diabetes Research, 2020, 9036847.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerke, S., Minssen, T., & Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare, 295–336.

    Google Scholar 

  • Ghafouri-Fard, S., Mohammad-Rahimi, H., Motie, P., Minabi, M. A. S., Taheri, M., & Nateghinia, S. (2021). Application of machine learning in the prediction of COVID-19 daily new cases: A scoping review. Heliyon, 7, e08143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghasemi, F., Mehridehnavi, A., Fassihi, A., & Pérez-Sánchez, H. (2018). Deep neural network in QSAR studies using deep belief network. Applied Soft Computing, 62, 251–258.

    Article  Google Scholar 

  • Gunkel, D. (2020). Mind the gap: Responsible robotics and the problem of responsibility. Ethics and Information Technology, 22, 307–320.

    Article  Google Scholar 

  • Haleem, A., Javaid, M., Singh, R. P., & Suman, R. (2021). Applications of artificial intelligence (AI) for cardiology during COVID-19 pandemic. Sustainable Operations and Computers, 2, 71–78.

    Article  PubMed Central  Google Scholar 

  • Han, S., Kelly, E., Nikou, S., & Svee, E.-O. (2022). Aligning artificial intelligence with human values: Reflections from a phenomenological perspective. AI & SOCIETY, 37, 1383–1395.

    Article  Google Scholar 

  • Hanauer, D. A., Mei, Q., Law, J., Khanna, R., & Zheng, K. (2015). Supporting information retrieval from electronic health records: A report of University of Michigan’s nine-year experience in developing and using the Electronic Medical Record Search Engine (EMERSE). Journal of Biomedical Informatics, 55, 290–300.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto, D. A., Rosman, G., Rus, D., & Meireles, O. R. (2018). Artificial intelligence in surgery: Promises and perils. Annals of Surgery, 268, 70–76.

    Article  PubMed  Google Scholar 

  • Hegghammer, T. (2022). OCR with Tesseract, Amazon Textract, and Google Document AI: A benchmarking experiment. Journal of Computational Social Science, 5, 861–882.

    Google Scholar 

  • Heintzelman, N. H., Taylor, R. J., Simonsen, L., Lustig, R., Anderko, D., Haythornthwaite, J. A., Childs, L. C., & Bova, G. S. (2012). Longitudinal analysis of pain in patients with metastatic prostate cancer using natural language processing of medical record text. Journal of the American Medical Informatics Association, 20, 898–905.

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry, J., Pylypchuk, Y., Searcy, T., & Patel, V. (2016). Adoption of electronic health record systems among US Non-Federal Acute Care Hospitals: 2008–2015. Washington, DC: Office of the National Coordinator for Health Information Technology.

    Google Scholar 

  • Hilty, D. M., Armstrong, C. M., Edwards-Stewart, A., Gentry, M. T., Luxton, D. D., & Krupinski, E. A. (2021). Sensor, wearable, and remote patient monitoring competencies for clinical care and training: Scoping review. Journal of Technology in Behavioral Science, 6, 252–277.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho, C. W. L., Ali, J., & Caals, K. (2020). Ensuring trustworthy use of artificial intelligence and big data analytics in health insurance. Bulletin of the World Health Organization, 98, 263–269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland, J., Kingston, L., McCarthy, C., Armstrong, E., O’Dwyer, P., Merz, F., & McConnell, M. (2021). Service robots in the healthcare sector. Robotics, 10, 47.

    Article  Google Scholar 

  • Holm, E. A. (2019). In defense of the black box. Science, 364, 26–27.

    Google Scholar 

  • Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18, 500–510.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, L., Shea, A. L., Qian, H., Masurkar, A., Deng, H., & Liu, D. (2019). Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. Journal of Biomedical Informatics, 99, 103291.

    Article  PubMed  Google Scholar 

  • Hughes, J. P., Rees, S., Kalindjian, S. B., & Philpott, K. L. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162, 1239–1249.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishii, T., Akaishi, T., Fujimori, K., Abe, M., Ohara, M., Shoji, M., Takayama, S., Sato, C., Nakayama, M., Tsuji, I., Nakano, T., Ohuchi, N., & Kamei, T. (2019). Application of large electronic medical database for detecting undiagnosed patients in the general population. Tohoku Journal of Experimental Medicine, 249, 113–119.

    Article  PubMed  Google Scholar 

  • Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2, 230–243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin, M. X., Kim, S. Y., Miller, L. J., Behari, G., & Correa, R. (2020). Telemedicine: Current impact on the future. Cureus, 12, e9891.

    PubMed  PubMed Central  Google Scholar 

  • Jovel, J., & Greiner, R. (2021). An introduction to machine learning approaches for biomedical research. Frontiers in Medicine (Lausanne), 8, 771607.

    Article  Google Scholar 

  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karimi, M., Wu, D., Wang, Z., & Shen, Y. (2019). DeepAffinity: Interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics, 35, 3329–3338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17, 195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan, Z. F., & Alotaibi, S. R. (2020). Applications of artificial intelligence and big data analytics in m-health: A healthcare system perspective. Journal of Healthcare Engineering, 2020, 8894694.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan, Z. H., Khalid, A., & Iqbal, J. (2018). Towards realizing robotic potential in future intelligent food manufacturing systems. Innovative Food Science & Emerging Technologies, 48, 11–24.

    Google Scholar 

  • Kichloo, A., Albosta, M., Dettloff, K., Wani, F., El-Amir, Z., Singh, J., Aljadah, M., Chakinala, R. C., Kanugula, A. K., Solanki, S., & Chugh, S. (2020). Telemedicine, the current COVID-19 pandemic and the future: A narrative review and perspectives moving forward in the USA. Family Medicine and Community Health, 8.

    Google Scholar 

  • Kim, H. E., Kim, H. H., Han, B. K., Kim, K. H., Han, K., Nam, H., Lee, E. H., & Kim, E. K. (2020). Changes in cancer detection and false-positive recall in mammography using artificial intelligence: A retrospective, multireader study. The Lancet Digital Health, 2, e138–e148.

    Article  PubMed  Google Scholar 

  • Kim, S., Han, L., Yu, B., Hähnke, V. D., Bolton, E. E., & Bryant, S. H. (2015). PubChem structure-activity relationship (SAR) clusters. Journal of Cheminformatics, 7, 33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirontech. Medical payment integrity. Retrieved November 01, 2022, from https://www.kirontech.com/

  • Kofax.com. Beyond RPA and cognitive document automation: Intelligent automation at scale. Retrieved November 01, 2022, from https://www.kofax.com/learn/blog/beyond-rpa-and-cognitive-document-automation-intelligent-automation-at-scale

  • Kolker, E., Özdemir, V., & Kolker, E. (2016). How healthcare can refocus on its super-customers (patients, n =1) and customers (doctors and nurses) by leveraging lessons from Amazon, Uber, and Watson. OMICS: A Journal of Integrative Biology, 20, 329–333.

    Article  PubMed  Google Scholar 

  • Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2022). Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. Journal of Ambient Intelligence and Humanized Computing, 1–28.

    Google Scholar 

  • Kuziemsky, C., Maeder, A. J., John, O., Gogia, S. B., Basu, A., Meher, S., & Ito, M. (2019). Role of artificial intelligence within the telehealth domain. Yearbook of Medical Informatics, 28, 35–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavecchia, A. (2015). Machine-learning approaches in drug discovery: Methods and applications. Drug Discovery Today, 20, 318–331.

    Google Scholar 

  • Lekadir, K., Quagli, G., Garmendi, A. T., & Gallin, C. (2022). Artificial intelligence in healthcare: Applications, risks, and ethical and societal impacts. In Panel on the Future of Science and Technology (Ed.). EPRS | European Parliamentary Research Service.

    Google Scholar 

  • Leng, S., Tan, R. S., Chai, K. T., Wang, C., Ghista, D., & Zhong, L. (2015). The electronic stethoscope. Biomedical Engineering Online, 14, 66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lescure, F.-X., Honda, H., Fowler, R. A., Lazar, J. S., Shi, G., Wung, P., Patel, N., Hagino, O., Bazzalo, I. J., & Casas, M. M. (2021). Sarilumab in patients admitted to hospital with severe or critical COVID-19: A randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Respiratory Medicine, 9, 522–532.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Hu, J., Wang, Y., Zhou, J., Zhang, L., & Liu, Z. (2020). DeepScaffold: A comprehensive tool for scaffold-based de novo drug discovery using deep learning. Journal of Chemical Information and Modeling, 60, 77–91.

    Article  PubMed  Google Scholar 

  • Liddy, E. D. (2001). Natural language processing.

    Google Scholar 

  • Liu, J., Zhang, Z., & Razavian, N. (2018). Deep EHR: Chronic disease prediction using medical notes. In D.-V. Finale, F. Jim, J. Ken, K. David, R. Rajesh, W. Byron, & W. Jenna (Eds.), Proceedings of the 3rd Machine Learning for Healthcare Conference. Proceedings of Machine Learning Research: PMLR.

    Google Scholar 

  • Liu, N., Kumara, S., & Reich, E. (2021). Gaining insights into patient satisfaction through interpretable machine learning. IEEE Journal of Biomedical and Health Informatics, 25, 2215–2226.

    Article  PubMed  Google Scholar 

  • Loria, K. (2018). Putting the AI in radiology. Radiology Today, 19, 10.

    Google Scholar 

  • Loucks, J., Hupfer, S., Jarvis, D., & Murphy, T. (2019). Future in the balance? How countries are pursuing an AI advantage. In Insights from Deloitte’s state of AI in the enterprise (2nd ed. survey).

    Google Scholar 

  • Lukas, H., Xu, C., Yu, Y., & Gao, W. (2020). Emerging telemedicine tools for remote COVID-19 diagnosis, monitoring, and management. ACS Nano, 14, 16180–16193.

    Article  PubMed  Google Scholar 

  • Lv, Z., & Qiao, L. (2020). Analysis of healthcare big data. Future Generation Computer Systems, 109, 103–110.

    Article  Google Scholar 

  • Macalino, S. J. Y., Gosu, V., Hong, S., & Choi, S. (2015). Role of computer-aided drug design in modern drug discovery. Archives of Pharmacal Research, 38, 1686–1701.

    Article  PubMed  Google Scholar 

  • Mackay, E. J., Stubna, M. D., Chivers, C., Draugelis, M. E., Hanson, W. J., Desai, N. D., & Groeneveld, P. W. (2021). Application of machine learning approaches to administrative claims data to predict clinical outcomes in medical and surgical patient populations. PLoS ONE, 16, e0252585.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackinnon, S. S., Madani Tonekaboni, S. A., & Windemuth, A. (2021). Proteome-scale drug-target interaction predictions: Approaches and applications. Current Protocols, 1, e302.

    Google Scholar 

  • Mak, K. K., & Pichika, M. R. (2019). Artificial intelligence in drug development: Present status and future prospects. Drug Discovery Today, 24, 773–780.

    Article  PubMed  Google Scholar 

  • Mann, D. M., Chen, J., Chunara, R., Testa, P. A., & Nov, O. (2020). COVID-19 transforms health care through telemedicine: Evidence from the field. Journal of the American Medical Informatics Association, 27, 1132–1135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzoni, C., Kia, D. A., Vandrovcova, J., Hardy, J., Wood, N. W., Lewis, P. A., & Ferrari, R. (2018). Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 19, 286–302.

    Article  PubMed  Google Scholar 

  • Mayr, A., Klambauer, G., Unterthiner, T., & Hochreiter, S. (2016). DeepTox: Toxicity prediction using deep learning. Frontiers in Environmental Science, 3.

    Google Scholar 

  • McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., … Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577, 89–94.

    Article  PubMed  Google Scholar 

  • Mehta, N., Pandit, A., & Shukla, S. (2019). Transforming healthcare with big data analytics and artificial intelligence: A systematic mapping study. Journal of Biomedical Informatics, 100, 103311.

    Article  PubMed  Google Scholar 

  • Minnich, A. J., McLoughlin, K., Tse, M., Deng, J., Weber, A., Murad, N., Madej, B. D., Ramsundar, B., Rush, T., Calad-Thomson, S., Brase, J., & Allen, J. E. (2020). AMPL: A data-driven modeling pipeline for drug discovery. Journal of Chemical Information and Modeling, 60, 1955–1968.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirbabaie, M., Stieglitz, S., & Möllmann, N. (2021). Artificial intelligence in disease diagnostics: A critical review and classification on the current state of research guiding future direction. Health and Technology, 11.

    Google Scholar 

  • Mohr, D. C., Zhang, M., & Schueller, S. M. (2017). Personal sensing: Understanding mental health using ubiquitous sensors and machine learning. Annual Review of Clinical Psychology, 13, 23–47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monaghesh, E., & Hajizadeh, A. (2020). The role of telehealth during COVID-19 outbreak: A systematic review based on current evidence. BMC Public Health, 20, 1193.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mouchlis, V. D., Afantitis, A., Serra, A., Fratello, M., Papadiamantis, A. G., Aidinis, V., Lynch, I., Greco, D., & Melagraki, G. (2021). Advances in de novo drug design: From conventional to machine learning methods. International Journal of Molecular Sciences, 22, 1676.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murff, H. J., Fitzhenry, F., Matheny, M. E., Gentry, N., Kotter, K. L., Crimin, K., Dittus, R. S., Rosen, A. K., Elkin, P. L., & Brown, S. H. (2011). Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA, 306, 848–855.

    PubMed  Google Scholar 

  • Musella, S., Verna, G., Fasano, A., & di Micco, S. (2021). New perspectives on machine learning in drug discovery. Current Medicinal Chemistry, 28, 6704–6728.

    Article  PubMed  Google Scholar 

  • Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language processing: An introduction. Journal of the American Medical Informatics Association, 18, 544–551.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nag, S., Baidya, A. T. K., Mandal, A., Mathew, A. T., Das, B., Devi, B., & Kumar, R. (2022). Deep learning tools for advancing drug discovery and development. 3 Biotech, 12, 110.

    Google Scholar 

  • Neumann, A., Kalenderian, E., Ramoni, R., Yansane, A., Tokede, B., Etolue, J., Vaderhobli, R., Simmons, K., Even, J., Mullins, J., Kumar, S., Bangar, S., Kookal, K., White, J., & Walji, M. (2017). Evaluating quality of dental care among patients with diabetes: Adaptation and testing of a dental quality measure in electronic health records. Journal of the American Dental Association, 148, 634-643.e1.

    Article  PubMed  Google Scholar 

  • Omboni, S., Padwal, R. S., Alessa, T., Benczúr, B., Green, B. B., Hubbard, I., Kario, K., Khan, N. A., Konradi, A., Logan, A. G., Lu, Y., Mars, M., McManus, R. J., Melville, S., Neumann, C. L., Parati, G., Renna, N. F., Ryvlin, P., Saner, H., … Wang, J. (2022). The worldwide impact of telemedicine during COVID-19: Current evidence and recommendations for the future. Connect Health, 1, 7–35.

    PubMed  PubMed Central  Google Scholar 

  • Osisanwo, F., Akinsola, J., Awodele, O., Hinmikaiye, J., Olakanmi, O., & Akinjobi, J. (2017). Supervised machine learning algorithms: Classification and comparison. International Journal of Computer Trends and Technology (IJCTT), 48, 128–138.

    Google Scholar 

  • Pacilè, S., Lopez, J., Chone, P., Bertinotti, T., Grouin, J. M., & Fillard, P. (2020). Improving breast cancer detection accuracy of mammography with the concurrent use of an artificial intelligence tool. Radiology: Artificial Intelligence, 2, e190208.

    PubMed  PubMed Central  Google Scholar 

  • Pallmann, P., Bedding, A. W., Choodari-Oskooei, B., Dimairo, M., Flight, L., Hampson, L. V., Holmes, J., Mander, A. P., Odondi, L. O., Sydes, M. R., Villar, S. S., Wason, J. M. S., Weir, C. J., Wheeler, G. M., Yap, C., & Jaki, T. (2018). Adaptive designs in clinical trials: Why use them, and how to run and report them. BMC Medicine, 16, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parasa, N. A., Namgiri, J. V., Mohanty, S. N., & Dash, J. K. (2021). Introduction to unsupervised learning in bioinformatics. Data Analytics in Bioinformatics.

    Google Scholar 

  • Patel, L., Shukla, T., Huang, X., Ussery, D. W., & Wang, S. (2020). Machine learning methods in drug discovery. Molecules, 25.

    Google Scholar 

  • Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26, 80–93.

    Article  PubMed  Google Scholar 

  • Petrescu, R. V. (2019). Medical service of robots. Journal of Mechatronics and Robotics, 3, 60–81.

    Google Scholar 

  • Podichetty, V., & Penn, D. (2004). The progressive roles of electronic medicine: Benefits, concerns, and costs. American Journal of the Medical Sciences, 328, 94–99.

    Article  PubMed  Google Scholar 

  • Powles, J., & Hodson, H. (2017). Google DeepMind and healthcare in an age of algorithms. Health and Technology (Berlin), 7, 351–367.

    Article  Google Scholar 

  • Quazi, S. (2022). Artificial intelligence and machine learning in precision and genomic medicine. Medical Oncology, 39, 120.

    Google Scholar 

  • Ramsundar, B., Pande, V., Eastman, P., Feinberg, E., Gomes, J., Leswing, K., Pappu, A., & Wu, M. (2016). Democratizing deep-learning for drug discovery, quantum chemistry, materials science and biology. GitHub Repository.

    Google Scholar 

  • Richardson, J. P., Smith, C., Curtis, S., Watson, S., Zhu, X., Barry, B., & Sharp, R. R. (2021). Patient apprehensions about the use of artificial intelligence in healthcare. npj Digital Medicine, 4, 140.

    Google Scholar 

  • Rysavy, M. (2013). Evidence-based medicine: A science of uncertainty and an art of probability. Virtual Mentor, 15, 4–8.

    Google Scholar 

  • Sabry, F., Eltaras, T., Labda, W., Alzoubi, K., & Malluhi, Q. (2022). Machine learning for healthcare wearable devices: The big picture. Journal of Healthcare Engineering, 2022, 4653923.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sætra, H. S. 92021). AI in context and the sustainable development goals: Factoring in the unsustainability of the sociotechnical system. Sustainability, 13, 1738.

    Google Scholar 

  • Sanchez-Lengeling, B., Outeiral, C., Guimaraes, G. L., & Aspuru-Guzik, A. (2017). Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). ChemRxiv.

    Google Scholar 

  • Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2, 160.

    Google Scholar 

  • Schäfer, M. B., Stewart, K. W., & Pott, P. P. (2019). Industrial robots for teleoperated surgery—A systematic review of existing approaches. Current Directions in Biomedical Engineering, 5, 153–156.

    Article  Google Scholar 

  • Scherer, M. U. (2015). Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harvard Journal of Law & Technology, 29, 353.

    Google Scholar 

  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.

    Google Scholar 

  • Schmidt-Erfurth, U., Bogunovic, H., Sadeghipour, A., Schlegl, T., Langs, G., Gerendas, B. S., Osborne, A., & Waldstein, S. M. (2018). Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration. Ophthalmology Retina, 2, 24–30.

    Article  PubMed  Google Scholar 

  • Sellwood, M. A., Ahmed, M., Segler, M. H., & Brown, N. (2018). Artificial intelligence in drug discovery. Future Medicinal Chemistry, 10, 2025–2028.

    Article  PubMed  Google Scholar 

  • Sennaar, K. Artificial intelligence in health insurance—Current applications and trends. https://emerj.com/. Retrieved November 01, 2022, from https://emerj.com/ai-sector-overviews/artificial-intelligence-in-health-insurance-current-applications-and-trends/

  • Shamshirband, S., Fathi, M., Dehzangi, A., Chronopoulos, A. T., & Alinejad-Rokny, H. (2021). A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues. Journal of Biomedical Informatics, 113, 103627.

    Article  PubMed  Google Scholar 

  • Shen, Y., Shamout, F. E., Oliver, J. R., Witowski, J., Kannan, K., Park, J., Wu, N., Huddleston, C., Wolfson, S., Millet, A., Ehrenpreis, R., Awal, D., Tyma, C., Samreen, N., Gao, Y., Chhor, C., Gandhi, S., Lee, C., Kumari-Subaiya, S., … Geras, K. J. (2021a). Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams. Nature Communications, 12, 5645.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, Y. T., Chen, L., Yue, W. W., & Xu, H. X. (2021b). Digital technology-based telemedicine for the COVID-19 pandemic. Frontiers in Medicine (Lausanne), 8, 646506.

    Article  Google Scholar 

  • Simon, S. J., & Simon, S. J. (2006). An examination of the financial feasibility of electronic medical records (EMRs): A case study of tangible and intangible benefits. International Journal of Electronic Healthcare, 2, 185–200.

    Article  PubMed  Google Scholar 

  • Sivapalasingam, S., Lederer, D. J., Bhore, R., Hajizadeh, N., Criner, G., Hosain, R., Mahmood, A., Giannelou, A., Somersan-Karakaya, S., & O’brien, M. P. (2022). Efficacy and safety of sarilumab in hospitalized patients with coronavirus disease 2019: A randomized clinical trial. Clinical Infectious Diseases.

    Google Scholar 

  • Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W., Jr. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66, 334–395.

    Google Scholar 

  • Stafford, K. A., Anderson, B. M., Sorenson, J., & van den Bedem, H. (2022). AtomNet PoseRanker: Enriching ligand pose quality for dynamic proteins in virtual high-throughput screens. Journal of Chemical Information and Modeling, 62, 1178–1189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephenson, N., Shane, E., Chase, J., Rowland, J., Ries, D., Justice, N., Zhang, J., Chan, L., & Cao, R. (2019). Survey of machine learning techniques in drug discovery. Current Drug Metabolism, 20, 185–193.

    Article  PubMed  Google Scholar 

  • Stork, C., Wagner, J., Friedrich, N. O., de Bruyn Kops, C., Šícho, M., & Kirchmair, J. (2018). Hit Dexter: A machine-learning model for the prediction of frequent hitters. ChemMedChem, 13, 564–571.

    Google Scholar 

  • Sükei, E., Norbury, A., Perez-Rodriguez, M. M., Olmos, P. M., & Artés, A. (2021). Predicting emotional states using behavioral markers derived from passively sensed data: Data-driven machine learning approach. JMIR mHealth and uHealth, 9, e24465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swarup, S., & Makaryus, A. N. (2018). Digital stethoscope: Technology update. Medical Devices (Auckland), 11, 29–36.

    Article  Google Scholar 

  • Taddeo, M., & Floridi, L. J. S. (2018). How AI can be a force for good. Science, 361, 751–752.

    Article  PubMed  Google Scholar 

  • Tai, M. C. (2020). The impact of artificial intelligence on human society and bioethics. Tzu Chi Medical Journal, 32, 339–343.

    Google Scholar 

  • Taylor, R. H., Menciassi, A., Fichtinger, G., Fiorini, P., & Dario, P. (2016). Medical robotics and computer-integrated surgery. In Springer handbook of robotics. Springer.

    Google Scholar 

  • Thakur, S., & Lahiry, S. (2021). Digital clinical trial: A new norm in clinical research. Perspectives in Clinical Research, 12, 184–188.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorsen-Meyer, H. C., Nielsen, A. B., Nielsen, A. P., Kaas-Hansen, B. S., Toft, P., Schierbeck, J., Strøm, T., Chmura, P. J., Heimann, M., Dybdahl, L., Spangsege, L., Hulsen, P., Belling, K., Brunak, S., & Perner, A. (2020). Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: A retrospective study of high-frequency data in electronic patient records. The Lancet Digital Health, 2, e179–e191.

    Article  PubMed  Google Scholar 

  • Tierney, M. J., Pageler, N. M., Kahana, M., Pantaleoni, J. L., & Longhurst, C. A. (2013). Medical education in the electronic medical record (EMR) era: Benefits, challenges, and future directions. Academic Medicine, 88, 748–752.

    Article  PubMed  Google Scholar 

  • Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Hachette UK.

    Google Scholar 

  • Tran, V. T., Riveros, C., & Ravaud, P. (2019). Patients’ views of wearable devices and AI in healthcare: Findings from the ComPaRe e-cohort. npj Digital Medicine, 2, 53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi, M. K., Nath, A., Singh, T. P., Ethayathulla, A. S., & Kaur, P. (2021). Evolving scenario of big data and artificial intelligence (AI) in drug discovery. Molecular Diversity, 25, 1439–1460.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsui, K. M., & Yanco, H. A. (2007). Assistive, rehabilitation, and surgical robots from the perspective of medical and healthcare professionals. In AAAI 2007 Workshop on Human Implications of Human-Robot Interaction, Technical Report WS-07-07 Papers from the AAAI 2007 Workshop on Human Implications of HRI, 2007. Australia: Springer Gold Coast.

    Google Scholar 

  • Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial intelligence (AI) applications for COVID-19 pandemic. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14, 337–339.

    Article  Google Scholar 

  • Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18, 463–477.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Hartskamp, M., Consoli, S., Verhaegh, W., Petkovic, M., & van de Stolpe, A. (2019). Artificial intelligence in clinical health care applications: Viewpoint. Interactive Journal of Medical Research, 8, e12100.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Melle, W. (1978). MYCIN: A knowledge-based consultation program for infectious disease diagnosis. International Journal of Man-Machine Studies, 10, 313–322.

    Google Scholar 

  • Van Norman, G. A. (2021). Decentralized clinical trials: The future of medical product development?. JACC: Basic to Translational Science, 6, 384–387.

    Google Scholar 

  • Vijayan, V., Connolly, J. P., Condell, J., Mckelvey, N., & Gardiner, P. (2021). Review of wearable devices and data collection considerations for connected health. Sensors (Basel), 21.

    Google Scholar 

  • Viswanathan, M., Golin, C. E., Jones, C. D., Ashok, M., Blalock, S. J., Wines, R. C., Coker-Schwimmer, E. J., Rosen, D. L., Sista, P., & Lohr, K. N. (2012). Interventions to improve adherence to self-administered medications for chronic diseases in the United States: A systematic review. Annals of Internal Medicine, 157, 785–795.

    Article  PubMed  Google Scholar 

  • Vlada, M., Babiy, I., & Ivanescu, O. J. S. (2010). ABBYY recognition technologies–ideal alternative to manual data entry. Automating processing of exam tests. Star, 3, 3–8.

    Google Scholar 

  • Waldman, C. E., Hermel, M., Hermel, J. A., Allinson, F., Pintea, M. N., Bransky, N., Udoh, E., Nicholson, L., Robinson, A., & Gonzalez, J. J. P. M. (2022). Artificial intelligence in healthcare: A primer for medical education in radiomics. Personalized Medicine, 19, 445–456.

    Article  PubMed  Google Scholar 

  • Wang, C., Yao, C., Chen, P., Shi, J., Gu, Z., & Zhou, Z. (2021). Artificial intelligence algorithm with ICD coding technology guided by the embedded electronic medical record system in medical record information management. Journal of Healthcare Engineering, 2021, 3293457.

    PubMed  PubMed Central  Google Scholar 

  • Wang, R., Pan, W., Jin, L., Li, Y., Geng, Y., Gao, C., Chen, G., Wang, H., Ma, D., & Liao, S. (2019). Artificial intelligence in reproductive medicine. Reproduction, 158, R139-r154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani, S. U. D., Khan, N. A., Thakur, G., Gautam, S. P., Ali, M., Alam, P., Alshehri, S., Ghoneim, M. M., & Shakeel, F. (2022). Utilization of artificial intelligence in disease prevention: Diagnosis, treatment, and implications for the healthcare workforce. Healthcare (Basel), 10.

    Google Scholar 

  • Wei, G.-W. (2019). Protein structure prediction beyond AlphaFold. Nature Machine Intelligence, 1, 336–337.

    Google Scholar 

  • WHO. (2020). WHO COVID-19 solidarity therapeutics trial. Retrieved November 05, 2022, from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments

  • Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques.

    Google Scholar 

  • Wójcikowski, M., Zielenkiewicz, P., & Siedlecki, P. (2015). Open drug discovery toolkit (ODDT): A new open-source player in the drug discovery field. Journal of Cheminformatics, 7.

    Google Scholar 

  • Xu, T., Zhang, Y., Wu, X., & Ming, W. Intelligent document processing.

    Google Scholar 

  • Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights into Imaging, 9, 611–629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, X., Wang, Y., Byrne, R., Schneider, G., & Yang, S. (2019). Concepts of artificial intelligence for computer-assisted drug discovery. Chemical Reviews, 119, 10520–10594.

    Article  PubMed  Google Scholar 

  • Yu, W., & MacKerell, A. D., Jr. (2017). Computer-aided drug design methods. Methods in Molecular Biology, 1520, 85–106.

    Google Scholar 

  • Zemmar, A., Lozano, A. M., & Nelson, B. J. (2020). The rise of robots in surgical environments during COVID-19. Nature Machine Intelligence, 2, 566–572.

    Article  Google Scholar 

  • Zeng, D., Cao, Z., & Neill, D. B. (2021). Artificial intelligence–enabled public health surveillance—From local detection to global epidemic monitoring and control. Artificial Intelligence in Medicine, 437–453.

    Google Scholar 

  • Zhang, B., & Dafoe, A. (2020). US public opinion on the governance of artificial intelligence. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (pp. 187–193).

    Google Scholar 

  • Zhang, D., Yin, C., Zeng, J., Yuan, X., & Zhang, P. (2020). Combining structured and unstructured data for predictive models: A deep learning approach. BMC Medical Informatics and Decision Making, 20, 280.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, H. H. (2014). Supervised learning. Wiley StatsRef: Statistics Reference Online.

    Google Scholar 

  • Zhang, X., Yan, C., Malin, B. A., Patel, M. B., & Chen, Y. (2021). Predicting next-day discharge via electronic health record access logs. Journal of the American Medical Informatics Association, 28, 2670–2680.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., & Lu, M. (2020). A review of recent advancements in soft and flexible robots for medical applications. The International Journal of Medical Robotics and Computer Assisted Surgery, 16, e2096.

    Google Scholar 

  • Zhao, L., Ciallella, H. L., Aleksunes, L. M., & Zhu, H. (2020). Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discovery Today, 25, 1624–1638.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohini Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R., Gulati, A., Chopra, K. (2023). Artificial Intelligence (AI) and Machine Learning (ML): An Innovative Cross-Talk Perspective and Their Role in the Healthcare Industry. In: Yadav, D.K., Gulati, A. (eds) Artificial Intelligence and Machine Learning in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-99-6472-7_2

Download citation

Publish with us

Policies and ethics