Skip to main content

Development and Characterization of PLA Based Bio-Polymer for Bio-Medical Applications

  • Chapter
  • First Online:
Advanced Materials for Biomedical Applications

Abstract

In recent years, natural fiber composites have arisen as a possible replacement for the conventional polymer composites; as environmental concerns arise. Natural fibers gain popularity due to their magnificent properties such as percentage elongation, tensile strength bio-compatibility and impact strength. The expansion of natural fiber used in the medical industry is a notable strategy for creating products that are affordable, bio-degradable, and durable. In the present chapter, treated and raw banana fibers are reinforced with poly-lactic acid (PLA) to fabricate fully bio-compatible polymers through the injection moulding process. The banana fibers are treated with a 5% (w/v) alkaline solution for its surface modification. The influence of fiber treatment and its different concentrations (10%, 20%, and 30%) on the mechanical characteristics of bio-composites are investigated. The study concludes that the mechanical properties of banana fiber reinforced bio-polymers are enhanced as fiber concentration increases. However, after alkaline treatment, the bio-polymers exhibited a decrease in impact strength and an increase in tensile strength. Furthermore, the findings indicate that banana fiber reinforced bio-polymers have the potential to be used in a wide range of applications which include bio-medical and furnishing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PLA:

Poly-lactic acid

PMC:

Polymer matrix composites

PVC:

Polyvinyl chloride

PP:

Polypropylene

PE:

Polyethylene

PS:

Polystyrene

NFC:

Natural fibers composites

LLDPE:

Linear low-density polyethylene

rpm:

Revolution per minute

UB:

Untreated banana fiber

TB:

Treated banana fiber

SEM:

Scanning electron microscope

w/v:

Weight/volume

J/m:

Joule per meter

References

  1. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873

    Article  Google Scholar 

  2. Asim M, Jawaid M, Saba N, Nasir M, Sultan MT (2017) Processing of hybrid polymer composites—a review. Hybrid Polym Compos Mater 1:1–22

    Google Scholar 

  3. Pickering KL, Efendy MA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 1(83):98–112

    Article  Google Scholar 

  4. Yashas Gowda TG, Sanjay MR, Subrahmanya Bhat K, Madhu P, Senthamaraikannan P, Yogesha B (2018) Polymer matrix-natural fiber composites: an overview. Cogent Eng 5(1):1446667

    Article  Google Scholar 

  5. Ramzy AY, El‐Sabbagh AM, Steuernagel L, Ziegmann G, Meiners D (2014) Rheology of natural fibers thermoplastic compounds: flow length and fiber distribution. J Appl Polym Sci 131(3)

    Google Scholar 

  6. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol: J Polym Process Inst 18(4):351–363

    Article  CAS  Google Scholar 

  7. Jones D, Ormondroyd GO, Curling SF, Popescu CM, Popescu MC (2017) Chemical compositions of natural fibres. In: Advanced high strength natural fibre composites in construction. Woodhead Publishing, pp 23–58

    Google Scholar 

  8. Namvar F, Jawaid M, Tanir PM, Mohamad R, Azizi S, Khodavandi A, Rahman HS, Nayeri MD (2014) Potential use of plant fibres and their composites for biomedical applications. Bioresources 12:9(3)

    Google Scholar 

  9. Khan MZ, Srivastava SK, Gupta MK (2018) Tensile and flexural properties of natural fiber reinforced polymer composites: a review. J Reinf Plast Compos 37(24):1435–1455

    Article  CAS  Google Scholar 

  10. Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33(6):362–369

    Article  CAS  Google Scholar 

  11. Reddy N, Yang Y (2011) Potential of plant proteins for medical applications. Trends Biotechnol 29(10):490–498

    Article  CAS  Google Scholar 

  12. Gorver CN (2012) Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastic for use in soft tissue engineering. J Mech Behav Biomed Mater 10:62–74

    Article  Google Scholar 

  13. Mahmoudifar N, Doran PM (2012) Chondrogenesis and cartilage tissue engineering: the longer road to technology development. Trends Biotechnol 30(3):166–176

    Article  CAS  Google Scholar 

  14. Cheung HY, Ho MP, Lau KT, Cardona F, Hui D (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos B Eng 40(7):655–663

    Article  Google Scholar 

  15. Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  16. Hartmann MH (1998) High molecular weight polylactic acid polymers. Biopolym Renew Resour 367–411

    Google Scholar 

  17. Fattahi FS, Khoddami A, Avinc O (2019) Poly (lactic acid)(PLA) nanofibers for bone tissue engineering. J TextEs Polym 7(2):47–64

    Google Scholar 

  18. Azimi B, Maleki H, Zavagna L, De la Ossa JG, Linari S, Lazzeri A, Danti S (2020) Bio-based electrospun fibers for wound healing. J Funct Biomater 11(3):67

    Article  CAS  Google Scholar 

  19. Maleki H, Semnani Rahbar R, Nazir A (2020) Improvement of physical and mechanical properties of electrospun poly (lactic acid) nanofibrous structures. Iran Polym J 29:841–851

    Article  CAS  Google Scholar 

  20. Maleki H, Azimi B, Ismaeilimoghadam S, Danti S (2022) Poly (lactic acid)-based electrospun fibrous structures for biomedical applications. Appl Sci 12(6):3192

    Article  CAS  Google Scholar 

  21. Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd Polym 1(209):130–144

    Article  Google Scholar 

  22. Sukchanta A, Kummanee P, Nuansing W (2021) Development and study on mechanical properties of small diameter artificial blood vessel by using electrospinning and 3d printing. J Phys Conf Ser 2145(1):012037. IOP Publishing

    Google Scholar 

  23. Hajikhani M, Emam-Djomeh Z, Askari G (2021) Fabrication and characterization of mucoadhesive bioplastic patch via coaxial polylactic acid (PLA) based electrospun nanofibers with antimicrobial and wound healing application. Int J Biol Macromol 1(172):143–153

    Article  Google Scholar 

  24. Herrero-Herrero M, Gómez-Tejedor JA, Vallés-Lluch A (2018) PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. Eur Polymer J 1(99):445–455

    Article  Google Scholar 

  25. Peranidze K, Safronova TV, Kildeeva NR (2021) Fibrous polymer-based composites obtained by electrospinning for bone tissue engineering. Polymers 14(1):96

    Article  Google Scholar 

  26. Abudula T, Saeed U, Memic A, Gauthaman K, Hussain MA, Al-Turaif H (2019) Electrospun cellulose nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering. J Polym Res 26:1–5

    CAS  Google Scholar 

  27. Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86(4):1468–1475

    Article  CAS  Google Scholar 

  28. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24(12):1259–1268

    Article  CAS  Google Scholar 

  29. Tsamo CV, Herent MF, Tomekpe K, Emaga TH, Quetin-Leclercq J, Rogez H, Larondelle Y, Andre C (2015) Phenolic profiling in the pulp and peel of nine plantain cultivars (Musa sp.). Food Chem 167:197–204

    Google Scholar 

  30. Rubio-López A, Artero-Guerrero J, Pernas-Sánchez J, Santiuste C (2017) Compression after impact of flax/PLA biodegradable composites. Polym Testing 1(59):127–135

    Article  Google Scholar 

  31. Kuciel S, Mazur K, Hebda M (2020) The influence of wood and basalt fibres on mechanical, thermal and hydrothermal properties of PLA composites. J Polym Environ 28:1204–1215

    Article  CAS  Google Scholar 

  32. Chaitanya S, Singh I (2018) Ecofriendly treatment of aloe vera fibers for PLA based green composites. Int J Precis Eng Manuf-Green Technol 5:143–150

    Article  Google Scholar 

  33. Ahmad I, Baharum A, Abdullah I (2006) Effect of extrusion rate and fiber loading on mechanical properties of Twaron fiber-thermoplastic natural rubber (TPNR) composites. J Reinf Plast Compos 25(9):957–965

    Article  CAS  Google Scholar 

  34. Chin SC, Tee KF, Tong FS, Ong HR, Gimbun J (2020) Thermal and mechanical properties of bamboo fiber reinforced composites. Mater Today Commun 1(23):100876

    Article  Google Scholar 

  35. Idicula M, Joseph K, Thomas S (2010) Mechanical performance of short banana/sisal hybrid fiber reinforced polyester composites. J Reinf Plast Compos 29(1):12–29

    Article  CAS  Google Scholar 

  36. Yadav V, Singh S (2022) A comprehensive review of natural fiber composites: applications, processing techniques and properties. Mater Today: Proc 56:2537–2542

    Google Scholar 

  37. Yadav V, Singh S, Chaudhary N, Garg MP, Sharma S, Kumar A, Li C, Eldin EM (2023) Dry sliding wear characteristics of natural fibre reinforced poly-lactic acid composites for Engineering applications: fabrication, properties and characterizations. J Mater Res Technol

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support given by the Punjab Engineering College, Chandigarh, India and SAIF/CIL, Panjab University, Chandigarh, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Sheel Rajput .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, V., Singh, S., Rajput, V.S., Sharma, B. (2024). Development and Characterization of PLA Based Bio-Polymer for Bio-Medical Applications. In: Rajput, V.S., Bhinder, J. (eds) Advanced Materials for Biomedical Applications. Biomedical Materials for Multi-functional Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-6286-0_11

Download citation

Publish with us

Policies and ethics