Skip to main content

Antibiofilm Metabolites from Sponge-Derived Aspergillus, Penicillium, and Fusarium for the Antibiotic Pipeline

  • Chapter
  • First Online:
Fungi Bioactive Metabolites

Abstract

Antibacterial resistance has recently been a huge burden on the pharmaceutical industry and a global threat to human’s health. Biofilm formation is a complex group of one or more microorganisms grouped together forming an extracellular polymeric substance (EPS) matrix that restricts the effectivity of antimicrobial compounds causing bacterial resistance infections. The discovery of new antibiofilm agents to serve us in the antibiotic pipeline is in huge demand as an increasing number of pathogenic bacteria are no longer responding to current antibiotics, resulting in less efficient treatment of infections. The marine environment is a novel source of thousands of natural products that possess various biological activities. Marine sponges are optimal sources for unique chemical scaffolding associated with symbiotic interactions. Marine sponges and their symbionts account for about 30% of the compounds discovered in the past few decades. This literature review will delve into fungal metabolites extracted from sponge-derived Aspergillus, Penicillium, and Fusarium from 2007 to 2022 covering their antibiotics and antibiofilm potentials. Metabolites collected from various locations could be unique to the collection location due to external factors, such as temperature, pH, salinity, and predators. This review chapter explores the impact of both geographical region and environmental conditions on secondary metabolite production and briefly outlines the current methods used for bioprospecting new antimicrobial agents. Current literature has shown the vast potential of sponge-derived fungal metabolites as potential novel antibiotics to combat the imminent threat of antibiotic resistance globally. Marine sponges are still relatively unexplored and have not been fully utilised as a latent source of new scaffolding and approaches to create novel antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaleem ER, Samy MN, Abdelmohsen UR, Desoukey SY (2022) Natural products potential of dictyoceratida sponges-associated micro-organisms. Lett Appl Microbiol 74(1):8–16

    Article  CAS  PubMed  Google Scholar 

  • Al-Saleem MSM, Hassan WHB, El Sayed ZI, Abdel-Aal MM, Abdel-Mageed WM, Abdelsalam E, Abdelaziz S (2022) Metabolic profiling and in vitro assessment of the biological activities of the ethyl acetate extract of Penicillium chrysogenum “endozoic of Cliona sp. marine sponge” from the Red Sea (Egypt). Mar Drugs 20(5):326–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves A, Cruz-Martins N, Rodrigues CF (2022) Marine compounds with anti-Candida sp. activity: a promised “land” for new antifungals. J Fungi (Basel) 8(7):669–679

    Article  CAS  PubMed  Google Scholar 

  • Amelia TSM, Suaberon FC, Vad J, Fahmi ADM, Saludes JP, Bhubalan K (2022) Recent advances of marine sponge-associated microorganisms as a source of commercially viable natural products. Mar Biotechnol (NY) 24(3):492–512

    Article  CAS  PubMed  Google Scholar 

  • Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3(8):673–683

    Article  CAS  PubMed  Google Scholar 

  • Aslam B, Afzaal M, Sameen A, Khurshid M, Saeed F, Jabeen S, Aadil RM (2022) Microbial symbiotic implications in exploring novel antibiotics. In: Singh J, Sharma D (eds) Microbial resource technologies for sustainable development. Elsevier, London, pp 213–226

    Chapter  Google Scholar 

  • Asma ST, Imre K, Morar A, Herman V, Acaroz U, Mukhtar H, Arslan-Acaroz D, Shah SRA, Gerlach R (2022) An overview of biofilm formation-combating strategies and mechanisms of action of antibiofilm agents. Life (Basel) 12(8):1110–1141

    CAS  PubMed  Google Scholar 

  • Balakrishnan D, Kandasamy D, Nithyanand P (2014) A review on antioxidant activity of marine organisms. Int J ChemTech Res 6:3431–3436

    CAS  Google Scholar 

  • Bayona LM, Van Leeuwen G, Erol Ö, Swierts T, Van Der Ent E, De Voogd NJ, Choi YH (2020) Influence of geographical location on the metabolic production of giant barrel sponges (Xestospongia spp.) revealed by metabolomics tools. ACS Omega 5(21):12398–12408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkmann CM, Marker A, Kurtböke Dİ (2017) An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9(4):40–71

    Article  Google Scholar 

  • Browne AJ, Chipeta MG, Haines-Woodhouse G, Kumaran EPA, Hamadani BHK, Zaraa S, Henry NJ, Deshpande A, Reiner RC Jr, Day NPJ, Lopez AD, Dunachie S, Moore CE, Stergachis A, Hay SI, Dolecek C (2021) Global antibiotic consumption and usage in humans, 2000–2013;18: a spatial modelling study. Lancet Planet Health 5(12):e893–e904

    Article  PubMed  PubMed Central  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21(1):143–163

    Article  CAS  PubMed  Google Scholar 

  • Carrier TJ, Maldonado M, Schmittmann L, Pita L, Bosch TCG, Hentschel U (2022) Symbiont transmission in marine sponges: reproduction, development, and metamorphosis. BMC Biol 20(1):100–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A 101(14):5048–5052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Liu D, Zhang Q, Guo P, Ding S, Shen J, Zhu K, Lin W (2021) A marine antibiotic kills multidrug-resistant bacteria without detectable high-level resistance. ACS Infect Dis 7(4):884–893

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Xu W, Liu L, Li S, Yuan W, Luo Z, Zhang J, Cheng Y, Li Q (2018) Peniginsengins B(−)E, new Farnesylcyclohexenones from the Deep Sea-derived fungus Penicillium sp. YPGA11. Mar Drugs 16(10):358–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng MM, Tang XL, Sun YT, Song DY, Cheng YJ, Liu H, Li PL, Li GQ (2020) Biological and chemical diversity of marine sponge-derived microorganisms over the last two decades from 1998 to 2017. Molecules 25(4):853–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtenay M, Castro-Sanchez E, Fitzpatrick M, Gallagher R, Lim R, Morris G (2019) Tackling antimicrobial resistance 2019–2024—the UK’s five-year national action plan. J Hosp Infect 101(4):426–427

    Article  CAS  PubMed  Google Scholar 

  • Cushnie TPT, Cushnie B, Echeverria J, Fowsantear W, Thammawat S, Dodgson JLA, Law S, Clow SM (2020) Bioprospecting for antibacterial drugs: a multidisciplinary perspective on natural product source material, bioassay selection and avoidable pitfalls. Pharm Res 37(7):125

    Article  CAS  PubMed  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Liu Y, Li J, Wang X, He S, Yan X, Shi Y, Zhang W, Ding L (2022) Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. Eur J Med Chem 239:114513–114534

    Article  CAS  PubMed  Google Scholar 

  • Doshi HK, Chua K, Kagda F, Tambyah PA (2011) Multi drug resistant pseudomonas infection in open fractures post definitive fixation leading to limb loss: a report of three cases. Int J Case Rep Images 2(5):1–6

    Article  Google Scholar 

  • Durães F, Szemerédi N, Kumla D, Pinto M, Kijjoa A, Spengler G, Sousa E (2021) Metabolites from marine-derived fungi as potential antimicrobial adjuvants. Mar Drugs 19(9):475–492

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Bondkly AAM, El-Gendy MMAA, El-Bondkly AMA (2020) Construction of efficient recombinant strain through genome shuffling in marine endophytic Fusarium sp. ALAA-20 for improvement of lovastatin production using agro-industrial wastes. Arabian J Sci Eng 46(1):175–190

    Article  Google Scholar 

  • El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM (2021) Marine endophytic fungal metabolites: a whole new world of pharmaceutical therapy exploration. Heliyon 7(3):e06362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etebu E, Arikekpar I (2016) Antibiotics: classification and mechanisms of action with emphasis on molecular perspectives. Int J Appl Microbiol Biotechnol Res 4(2016):90–101

    Google Scholar 

  • Evans ML, Gichana E, Zhou Y, Chapman MR (2018) Bacterial amyloids. Methods Mol Biol 1779:267–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming D, Rumbaugh KP (2017) Approaches to dispersing medical biofilms. Microorganisms 5(2):15–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 32(7):904–936

    Article  PubMed  Google Scholar 

  • Gomes NGM, Madureira-Carvalho A, Dias-Da-Silva D, Valentao P, Andrade PB (2021) Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomed Pharmacother 140:111756

    Article  CAS  PubMed  Google Scholar 

  • Gupta RC, Srivastava A, Lall R (2018) Ochratoxins and citrinin. In: GUPTA RC (ed) Veterinary toxicology, 3rd edn. Academic Press, London

    Google Scholar 

  • Hafez Ghoran S, Taktaz F, Ayatollahi SA, Kijjoa A (2022) Anthraquinones and their analogues from marine-derived fungi: chemistry and biological activities. Mar Drugs 20(8):474–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock REW, Alford MA, Haney EF (2021) Antibiofilm activity of host defence peptides: complexity provides opportunities. Nat Rev Microbiol 19(12):786–797

    Article  CAS  PubMed  Google Scholar 

  • Hawkey PM (1998) The origins and molecular basis of antibiotic resistance. BMJ 317(7159):657–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong L-L, Ding Y-F, Zhang W, Lin H-W (2022) Chemical and biological diversity of new natural products from marine sponges: a review (2009–2018). Mar Life Sci Technol 4(3):356–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim SRM, Mohamed GA, Khedr AIM (2017) Gamma-butyrolactones from Aspergillus species: structures, biosynthesis, and biological activities. Nat Prod Commun 12(5):791–800

    PubMed  Google Scholar 

  • Indraningrat AA, Smidt H, Sipkema D (2016) Bioprospecting sponge-associated microbes for antimicrobial compounds. Mar Drugs 14(5):87–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81(1):7–11

    Article  PubMed  Google Scholar 

  • Jiang R, Pawliszyn J (2014) Cooled membrane for high sensitivity gas sampling. J Chromatogr A 1338:17–23

    Article  CAS  PubMed  Google Scholar 

  • Jones EBG, Ramakrishna S, Vikineswary S, Das D, Bahkali AH, Guo SY, Pang KL (2022) How do fungi survive in the sea and respond to climate change? J Fungi (Basel) 8(3):291

    Article  CAS  PubMed  Google Scholar 

  • Kaplan JB (2009) Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs 32(9):545–554

    Article  CAS  PubMed  Google Scholar 

  • Karpinski TM (2019) Marine macrolides with antibacterial and/or antifungal activity. Mar Drugs 17(4):241–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthikeyan A, Joseph A, Nair BG (2022) Promising bioactive compounds from the marine environment and their potential effects on various diseases. J Genet Eng Biotechnol 20(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan M, Shamim S (2022) Understanding the mechanism of antimicrobial resistance and pathogenesis of salmonella enterica Serovar Typhi. Microorganisms 10(10):2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S, Lipton AN, Ninawe AS, Selvin J (2018) Marine sponge microbial association: towards disclosing unique symbiotic interactions. Mar Environ Res 140:169–179

    Article  CAS  PubMed  Google Scholar 

  • Koch L, Lodin A, Herold I, Ilan M, Carmeli S, Yarden O (2014) Sensitivity of Neurospora crassa to a marine-derived Aspergillus tubingensis anhydride exhibiting antifungal activity that is mediated by the MAS1 protein. Mar Drugs 12(9):4713–4731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong C, Huang H, Xue Y, Liu Y, Peng Q, Liu Q, Xu Q, Zhu Q, Yin Y, Zhou X, Zhang Y, Cai M (2018) Heterologous pathway assembly reveals molecular steps of fungal terreic acid biosynthesis. Sci Rep 8(1):2116–2128

    Article  PubMed  PubMed Central  Google Scholar 

  • Koopmans M, Martens D, Wijffels RH (2009) Towards commercial production of sponge medicines. Mar Drugs 7(4):787–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3(4):a010306–a010330

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuml D, Dethoup T, Buttachon S, Singburaudom N, Silva AM, Kijjoa A (2014) Spiculisporic acid E, a new spiculisporic acid derivative and ergosterol derivatives from the marine-sponge associated fungus Talaromyces trachyspermus (KUFA 0021). Nat Prod Commun 9(8):1147–1150

    PubMed  Google Scholar 

  • Kumla D, Dethoup T, Gales L, Pereira JA, Freitas-Silva J, Costa PM, Silva AMS, Pinto MMM, Kijjoa A (2019) Erubescensoic acid, a new Polyketide and a Xanthonopyrone SPF-3059-26 from the culture of the marine sponge-associated fungus Penicillium erubescens KUFA 0220 and antibacterial activity evaluation of some of its constituents. Molecules 24(1):208

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebeaux D, Ghigo JM, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78(3):510–543

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YM, Li H, Hong J, Cho HY, Bae KS, Kim MA, Kim DK, Jung JH (2010) Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res 33(2):231–235

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Cho Y, Tran HNK (2021) Secondary metabolites from the marine sponges of the genus Petrosia: a literature review of 43 years of research. Mar Drugs 19(3):122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitus M, Rewane A, Perera TB (2022) Vancomycin-resistant enterococci. In: StatPearls. StatPearls Publishing, Treasure Island, FL

    Google Scholar 

  • Li Z (2009) Advances in marine symbiotic cyanobacteria. In: Gault PM, Marler HJ (eds) Handbook on cyanobacteria: biochemistry, biotechnology and applications. Nova Science, New York, pp 464–472

    Google Scholar 

  • Li XH, Lee JH (2017) Antibiofilm agents: a new perspective for antimicrobial strategy. J Microbiol 55(10):753–766

    Article  CAS  PubMed  Google Scholar 

  • Li D, Xu Y, Shao C-L, Yang R-Y, Zheng C-J, Chen Y-Y, Fu X-M, Qian P-Y, She Z-G, Voogd NJD, Wang C-Y (2012) Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Mar Drugs 10(1):234–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Maimaitiming M, Zhou Y, Li H, Wang P, Liu Y, Schaberle TF, Liu Z, Wang CY (2022a) Discovery of marine natural products as promising antibiotics against Pseudomonas aeruginosa. Mar Drugs 20(3):192

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Mao S, Wang H, Ye X (2022b) The molecular architecture of Pseudomonas aeruginosa quorum-sensing inhibitors. Mar Drugs 20(8):488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, Brauers G, Ebel R, Wray V, Berg A, Sudarsono, Proksch P (2003) Novel chromone derivatives from the fungus Aspergillus versicolor isolated from the marine sponge Xestospongia exigua. J Nat Prod 66(1):57–61

    Article  CAS  PubMed  Google Scholar 

  • Lindequist U (2016) Marine-derived pharmaceuticals—challenges and opportunities. Biomol Ther (Seoul) 24(6):561–571

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Dai H, Konuklugil B, Orfali RS, Lin W, Kalscheuer R, Liu Z, Proksch P (2016) Phenolic bisabolanes from the sponge-derived fungus Aspergillus sp. Phytochem Lett 18:187–191

    Article  Google Scholar 

  • Liu Y, Ding L, Fang F, He S (2019) Penicillilactone a, a novel antibacterial 7-membered lactone derivative from the sponge-associated fungus Penicillium sp. LS54. Nat Prod Res 33(17):2466–2470

    Article  CAS  PubMed  Google Scholar 

  • Lopanik NB (2014) Chemical defensive symbioses in the marine environment. Funct Ecol 28(2):328–340

    Article  Google Scholar 

  • Luo Y, Song Y (2021) Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci 22(21):11401–11421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Bryers JD (2013) Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Appl Microbiol Biotechnol 97(1):317–328

    Article  CAS  PubMed  Google Scholar 

  • Ma HG, Liu Q, Zhu GL, Liu HS, Zhu WM (2016) Marine natural products sourced from marine-derived Penicillium fungi. J Asian Nat Prod Res 18(1):92–115

    Article  CAS  PubMed  Google Scholar 

  • Mattarelli P, Sgorbati B (2018) Chemotaxonomic features in the bifidobacteriaceae family. In: Mattarelli P, Biavati B, Holzapfel WH, Wood BJB (eds) The bifidobacteria and related organisms. Academic Press, London

    Google Scholar 

  • Mayer AMS, Rodriguez AD, Taglialatela-Scafati O, Fusetani N (2017) Marine pharmacology in 2012–2013: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 15(9):273

    Article  PubMed  PubMed Central  Google Scholar 

  • Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C, Astudillo-Garcia C, Easson C, Sipkema D, Liu F, Steinert G, Kotoulas G, Mccormack GP, Feng G, Bell JJ, Vicente J, Bjork JR, Montoya JM, Olson JB, Reveillaud J, Steindler L, Pineda MC, Marra MV, Ilan M, Taylor MW, Polymenakou P, Erwin PM, Schupp PJ, Simister RL, Knight R, Thacker RW, Costa R, Hill RT, Lopez-Legentil S, Dailianis T, Ravasi T, Hentschel U, Li Z, Webster NS, Thomas T (2017) The sponge microbiome project. Gigascience 6(10):1–7

    Article  CAS  PubMed  Google Scholar 

  • Mosadeghzad Z, Zakaria Z, Asmat A, Gires U, Wickneswari R, Pittayakhajonwut P, Farahani G (2012) Chemical components of marine sponge derived fungus Fusarium proliferatum collected from Pulau Tinggi, Malaysia. Sains Malays 41:333–337

    CAS  Google Scholar 

  • Nadar S, Khan T, Patching SG, Omri A (2022) Development of antibiofilm therapeutics strategies to overcome antimicrobial drug resistance. Microorganisms 10(2):303–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoletti R, Trincone A (2016) Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin. Mar Drugs 14(2):37

    Article  PubMed  PubMed Central  Google Scholar 

  • Oladipo A, Enwemiwe V, Ejeromedoghene O, Adebayo A, Ogunyemi O, Fu F (2022) Production and functionalities of specialized metabolites from different organic sources. Meta 12(6):534

    CAS  Google Scholar 

  • Oulhen N, Schulz BJ, Carrier TJ (2016) English translation of Heinrich Anton de Bary’s 1878 speech, ‘die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis 69(3):131–139

    Article  Google Scholar 

  • Pang X, Cai G, Lin X, Salendra L, Zhou X, Yang B, Wang J, Wang J, Xu S, Liu Y (2019) New alkaloids and polyketides from the marine sponge-derived fungus Penicillium sp. SCSIO41015. Mar Drugs 17(7):398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrino B, Schillaci D, Carnevale I, Giovannetti E, Diana P, Cirrincione G, Cascioferro S (2019) Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 161:154–178

    Article  CAS  PubMed  Google Scholar 

  • Petrini O, Sieber TN, Toti L, Viret O (1993) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1(3):185–196

    Article  Google Scholar 

  • Pita L, Rix L, Slaby BM, Franke A, Hentschel U (2018) The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6(46):1–18

    Google Scholar 

  • Pompilio A, Scocchi M, Mangoni ML, Shirooie S, Serio A, Ferreira Garcia Da Costa Y, Alves MS, Seker Karatoprak G, Suntar I, Khan H, Di Bonaventura G (2022) Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms? Crit Rev Microbiol 49:117–149

    Article  PubMed  Google Scholar 

  • Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109(7):309–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Prompanya C, Dethoup T, Bessa LJ, Pinto MM, Gales L, Costa PM, Silva AM, Kijjoa A (2014) New isocoumarin derivatives and meroterpenoids from the marine sponge-associated fungus Aspergillus similanensis sp. Nov. KUFA 0013. Mar Drugs 12(10):5160–5173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, Mcnamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18(1):41–58

    Article  CAS  PubMed  Google Scholar 

  • Raheem N, Straus SK (2019) Mechanisms of action for antimicrobial peptides with antibacterial and Antibiofilm functions. Front Microbiol 10:2866

    Article  PubMed  PubMed Central  Google Scholar 

  • Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4(3):482–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues AG (2016) Secondary metabolism and antimicrobial metabolites of Aspergillus. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 81–93

    Chapter  Google Scholar 

  • Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9(1):522–554

    Article  CAS  PubMed  Google Scholar 

  • Sabdaningsih A, Liu Y, Mettal U, Heep J, Riyanti, Wang L, Cristianawati O, Nuryadi H, Triandala Sibero M, Marner M, Radjasa OK, Sabdono A, Trianto A, Schaberle TF (2020) A new citrinin derivative from the Indonesian marine sponge-associated fungus Penicillium citrinum. Mar Drugs 18(4):227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San-Martin A, Rovirosa J, Vaca I, Vergara K, Acevedo L, Viña D, Orallo F, Chamy MC (2011) New butyrlactone from a marine-derived fungus Aspergillus sp. J Chil Chem Soc 56:625–627

    Article  CAS  Google Scholar 

  • Schönberg C (2016) Effects of dredging on filter feeder communities, with a focus on sponges report of theme, 127

    Google Scholar 

  • Shaala LA, Alzughaibi T, Genta-Jouve G, Youssef DTA (2021) Fusaripyridines a and B; highly oxygenated antimicrobial alkaloid dimers featuring an unprecedented 1,4-bis(2-hydroxy-1,2-dihydropyridin-2-yl)butane-2,3-dione core from the marine fungus Fusarium sp. LY019. Mar Drugs 19(9):505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah M, Sun C, Sun Z, Zhang G, Che Q, Gu Q, Zhu T, Li D (2020) Antibacterial polyketides from antarctica sponge-derived fungus Penicillium sp. HDN151272. Mar Drugs 18(2):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8(1):76–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Sibero MT, Zhou T, Fukaya K, Urabe D, Radjasa OKK, Sabdono A, Trianto A, Igarashi Y (2019) Two new aromatic polyketides from a sponge-derived Fusarium. Beilstein J Org Chem 15:2941–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh L, Cariappa MP, Kaur M (2016) Klebsiella oxytoca: an emerging pathogen? Med J Armed Forces India 72:S59–S61

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffen K, Indraningrat AG, Erngren I, Haglöf J, Becking LE, Smidt H, Yashayaev I, Kenchington E, Pettersson C, Cárdenas P, Sipkema D (2022) Oceanographic setting influences the prokaryotic community and metabolome in deep-sea sponges. Sci Rep 12(1):3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart PS, William Costerton J (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138

    Article  CAS  PubMed  Google Scholar 

  • Stowe SD, Richards JJ, Tucker AT, Thompson R, Melander C, Cavanagh J (2011) Anti-biofilm compounds derived from marine sponges. Mar Drugs 9(10):2010–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliabue A, Rappuoli R (2018) Changing priorities in vaccinology: antibiotic resistance moving to the top. Front Immunol 9:1068

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71(2):295–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor F, Ward K, Moore TH, Burke M, Davey Smith G, Casas JP, Ebrahim S (2011) Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2013(1):CD004816

    Google Scholar 

  • Teixeira-Santos R, Gomes LC, Mergulhão FJM (2022) Recent advances in antimicrobial surfaces for urinary catheters. Curr Opin Biomed Eng 22:100394–100406

    Article  CAS  Google Scholar 

  • Toghueo RMK, Boyom FF (2020) Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 10(3):107

    Article  PubMed  PubMed Central  Google Scholar 

  • Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SE, Lai KS, Chong CM (2021) Bioactive compounds from marine sponges: fundamentals and applications. Mar Drugs 19(5):246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visamsetti A, Ramachandran SS, Kandasamy D (2016) Penicillium chrysogenum DSOA associated with marine sponge (Tedania anhelans) exhibit antimycobacterial activity. Microbiol Res 185:55–60

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang L, Liu F, Wang Q, Selvaraj JN, Xing F, Zhao Y, Liu Y (2016) Ochratoxin a producing fungi, biosynthetic pathway and regulatory mechanisms. Toxins 8(3):83–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Weigelt MA, Mcnamara SA, Sanchez D, Hirt PA, Kirsner RS (2021) Evidence-based review of antibiofilm agents for wound care. Adv Wound Care (New Rochelle) 10(1):13–23

    Article  PubMed  Google Scholar 

  • Wiese J, Ohlendorf B, Blumel M, Schmaljohann R, Imhoff JF (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9(4):561–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilbur SL, Marchlinski FE (1997) Adenosine as an antiarrhythmic agent. Am J Cardiol 79(12):30–37

    Article  CAS  PubMed  Google Scholar 

  • Wong Chin JM, Puchooa D, Bahorun T, Jeewon R (2021) Antimicrobial properties of marine fungi from sponges and brown algae of Mauritius. Mycology 12(4):231–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M-J, Zhong L-J, Chen J-K, Bu Q, Liang L-F (2022) Secondary metabolites from marine sponges of the genus Oceanapia: chemistry and biological activities. Mar Drugs 20(2):144–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu X, Li L, Sun S, Chang A, Dai X, Li H, Wang Y, Zhu H (2021) A cyclic dipeptide from marine fungus Penicillium Chrysogenum DXY-1 exhibits anti-quorum sensing activity. ACS Omega 6(11):7693–7700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Wang M, Zhu X, Yu W, Gong Q (2018) Equisetin as potential quorum sensing inhibitor of Pseudomonas aeruginosa. Biotechnol Lett 40(5):865–870

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wei Q, Yuan X, Xu K (2020) Newly reported alkaloids produced by marine-derived Penicillium species (covering 2014–2018). Bioorg Chem 99:103840

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Song W, Nothias LF, Couvillion SP, Webster N, Thomas T (2022) Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts. Microbiome 10(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Debbab A, Wray V, Lin W, Schulz B, Trepos R, Pile C, Hellio C, Proksch P, Aly AH (2014) Marine bacterial inhibitors from the sponge-derived fungus Aspergillus sp. Tetrahedron Lett 55(17):2789–2792

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RuAngelie Edrada-Ebel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edrada-Ebel, R., Michael, A., Alsaleh, F., Zaharuddin, H.B. (2024). Antibiofilm Metabolites from Sponge-Derived Aspergillus, Penicillium, and Fusarium for the Antibiotic Pipeline. In: Deshmukh, S.K., Takahashi, J.A., Saxena, S. (eds) Fungi Bioactive Metabolites. Springer, Singapore. https://doi.org/10.1007/978-981-99-5696-8_6

Download citation

Publish with us

Policies and ethics