Skip to main content

Nontuberculous Mycobacterium Infections in Lung Disease and Medical Interventions

  • Chapter
  • First Online:
Diagnosis of Mycobacterium

Abstract

Infection with nontuberculous mycobacteria (NTM) is on the rise all across the world. Lung disease due to NTM is more prevalent and frequent and is increasingly recognized worldwide. Primarily because approximately 200 different species of NTM have been identified, Mycobacterium avium complex (MAC), Mycobacterium abscessus complex (MABC) and Mycobacterium kanasii are mostly responsible for lung infections. Nontuberculous mycobacteria are opportunistic pathogens that harm humans with underlying lung disease or weak immune systems, although anyone can get an NTM infection. There are three main patient groups that are more susceptible to getting NTM lung disease: those with immunologic diseases or suspected genetic conditions that increase the risk of developing bronchiectasis and/or lung infections; those with anatomic lung abnormalities; and people with no significant lung or immunological issues. Previously, it was supposed that NTM transmissions between individuals were physically impossible. Recent research has shown that this is actually feasible. Two different types of NTM lung disease appear rapidly progressive cavitary disease and less severe nodular bronchiectasis. Diagnosis method is different for rapid growing and slow growing NTM. Molecular techniques have replaced traditional biochemical testing. The treatment of NTM disorders requires long-term, targeted antibiotic medication. However, determining the most effective course of action and length of therapy is difficult given the present limitations of prospective, controlled, and randomized treatment studies. Due to the lack of prospective, controlled, and randomized treatment studies, determining the optimal treatment plans and durations for NTM disorders is difficult. This article summarizes the current understanding of NTM lung illness and treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centers for Disease Control and Prevention. Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Healthcare Quality Promotion (DHQP). Nontuberculous Mycobacteria (NTM) Infections.2019

    Google Scholar 

  2. Zulu M, Monde N, Nkhoma P, Malama S, Munyeme M. Nontuberculous mycobacteria in humans, animals, and water in Zambia: a systematic review. Front Trop Dis. 2021;2:679501.

    Google Scholar 

  3. Blanc SM, Robinson D, Fahrenfeld NL. Potential for nontuberculous mycobacteria proliferation in natural and engineered water systems due to climate change: a literature review. City Environ Interact. 2021;11:100070.

    Google Scholar 

  4. Park DW, Kim YJ, Sung YK, Chung SJ, Yeo Y, Park TS, Lee H, Moon JY, Kim SH, Kim TH, Yoon HJ. TNF inhibitors increase the risk of nontuberculous mycobacteria in patients with seropositive rheumatoid arthritis in a mycobacterium tuberculosis endemic area. Sci Rep. 2022;12(1):4003.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma SK, Upadhyay V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J Med Res. 2020;152(3):185.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson MM, Odell JA. Nontuberculous mycobacterial pulmonary infections. J Thorac Dis. 2014;6(3):210.

    PubMed  PubMed Central  Google Scholar 

  7. Donohue MJ, Wymer L. Increasing prevalence rate of nontuberculous mycobacteria infections in five states, 2008–2013. Ann Am Thorac Soc. 2016;13(12):2143–50.

    PubMed  Google Scholar 

  8. Kwon YS, Koh WJ. Diagnosis and treatment of nontuberculous mycobacterial lung disease. J Korean Med Sci. 2016;31(5):649–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. General overview of nontuberculous mycobacteria opportunistic pathogens: Mycobacterium avium and mycobacterium abscessus. J Clin Med. 2020;9(8):2541.

    PubMed  PubMed Central  Google Scholar 

  10. Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis. 2016;45:123–34.

    PubMed  Google Scholar 

  11. Philley JV, Griffith DE. Treatment of slowly growing mycobacteria. Clin Chest Med. 2015;36(1):79–90.

    PubMed  Google Scholar 

  12. Koh WJ, Stout JE, Yew WW. Advances in the management of pulmonary disease due to mycobacterium abscessus complex. Int J Tuberc Lung Dis. 2014;18(10):1141–8.

    PubMed  Google Scholar 

  13. Cowman S, van Ingen J, Griffith DE, Loebinger MR. Non-tuberculous mycobacterial pulmonary disease. Eur Respir J. 2019;54(1):1900250.

    CAS  PubMed  Google Scholar 

  14. Faverio P, De Giacomi F, Bodini BD, Stainer A, Fumagalli A, Bini F, Luppi F, Aliberti S. Nontuberculous mycobacterial pulmonary disease: an integrated approach beyond antibiotics. ERJ Open Res. 2021;7(2):00574.

    PubMed  PubMed Central  Google Scholar 

  15. Swenson C, Zerbe CS, Fennelly K. Host variability in NTM disease: implications for research needs. Front Microbiol. 2018;9:2901.

    PubMed  PubMed Central  Google Scholar 

  16. Jeong BH, Kim SY, Jeon K, Lee SY, Shin SJ, Koh WJ. Serodiagnosis of Mycobacterium avium complex and mycobacterium abscessus complex pulmonary disease by use of IgA antibodies to glycopeptidolipid core antigen. J Clin Microbiol. 2013;51(8):2747–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mirabal AB, Ferrer G. Lung nontuberculous mycobacterial infections. In: StatPearls. Treasure Island, FL: StatPearls; 2022. p. 28.

    Google Scholar 

  18. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416.

    CAS  PubMed  Google Scholar 

  19. Khoor A, Leslie KO, Tazelaar HD, Helmers RA, Colby TV. Diffuse pulmonary disease caused by nontuberculous mycobacteria in immunocompetent people (hot tub lung). Am J Clin Pathol. 2001;115(5):755–62.

    CAS  PubMed  Google Scholar 

  20. Piersimoni C, Scarparo C. Extrapulmonary infections associated with nontuberculous mycobacteria in immunocompetent persons. Emerg Infect Dis. 2009;15(9):1351.

    PubMed  PubMed Central  Google Scholar 

  21. Dowdell K, Haig SJ, Caverly LJ, Shen Y, LiPuma JJ, Raskin L. Nontuberculous mycobacteria in drinking water systems - the challenges of characterization and risk mitigation. Curr Opin Biotechnol. 2019;57:127–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nishiuchi Y, Iwamoto T, Maruyama F. Infection sources of a common non-tuberculous mycobacterial pathogen, Mycobacterium avium complex. Front Med. 2017;4:27.

    Google Scholar 

  23. Jarlier V, Nikaido H. Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett. 1994;123(1–2):11–8.

    CAS  PubMed  Google Scholar 

  24. Falkinham JO III. Growth in catheter biofilms and antibiotic resistance of Mycobacterium avium. J Med Microbiol. 2007;56(2):250–4.

    PubMed  Google Scholar 

  25. Parker BC, Ford MA, Gruft H, Falkinham JO III. Epidemiology of infection by nontuberculous mycobacteria: IV. Preferential aerosolization of mycobacterium intracellulare from natural waters. Am Rev Respir Dis. 1983;128(4):652–6.

    CAS  PubMed  Google Scholar 

  26. Yates MD, Grange JM, Collins CH. The nature of mycobacterial disease in south East England, 1977-84. J Epidemiol Community Health. 1986;40(4):295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Research Committee of the British Thoracic Society. Pulmonary disease caused by M. malmoense in HIV negative patients: 5-yr follow-up of patients receiving standardised treatment. Eur Respir J. 2003;21(3):478–82.

    Google Scholar 

  28. Jenkins PA, Campbell IA. Pulmonary disease caused by mycobacterium xenopi in HIV-negative patients: five year follow-up of patients receiving standardised treatment. Respir Med. 2003;97(4):439–44.

    CAS  PubMed  Google Scholar 

  29. Morimoto K, Aono A, Murase Y, Sekizuka T, Kurashima A, Takaki A, Sasaki Y, Igarashi Y, Chikamatsu K, Goto H, Yamada H. Prevention of aerosol isolation of nontuberculous mycobacterium from the patient's bathroom. ERJ Open Res. 2018;4(3):00150.

    PubMed  PubMed Central  Google Scholar 

  30. Falkinham JO III. Ecology of nontuberculous mycobacteria—where do human infections come from? In: Seminars in respiratory and critical care medicine, vol. 34. New York: Thieme Medical; 2013. p. 095.

    Google Scholar 

  31. Kim YM, Kim M, Kim SK, Park K, Jin SH, Lee US, Kim Y, Chae GT, Lee SB. Mycobacterial infections in coal workers’ pneumoconiosis patients in South Korea. Scand J Infect Dis. 2009;41(9):656–62.

    PubMed  Google Scholar 

  32. Ryu YJ, Koh WJ, Daley CL. Diagnosis and treatment of nontuberculous mycobacterial lung disease: clinicians' perspectives. Tuberc Respir Dis. 2016;79(2):74–84.

    Google Scholar 

  33. Pathak K, Hart S, Lande L. Nontuberculous mycobacteria lung disease (NTM-LD): current recommendations on diagnosis, treatment, and patient management. Int J Gen Med. 2022;1:7619–29.

    Google Scholar 

  34. Prevots DR, Marras TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med. 2015;36(1):13–34.

    PubMed  Google Scholar 

  35. Hermansen TS, Ravn P, Svensson E, Lillebaek T. Nontuberculous mycobacteria in Denmark, incidence and clinical importance during the last quarter-century. Sci Rep. 2017;7(1):6696.

    PubMed  PubMed Central  Google Scholar 

  36. Simons S, Van Ingen J, Hsueh PR, Van Hung N, Dekhuijzen PR, Boeree MJ, van Soolingen D. Nontuberculous mycobacteria in respiratory tract infections, eastern Asia. Emerg Infect Dis. 2011;17(3):343.

    PubMed  PubMed Central  Google Scholar 

  37. Moore JE, Kruijshaar ME, Ormerod LP, Drobniewski F, Abubakar I. Increasing reports of non-tuberculous mycobacteria in England, Wales and Northern Ireland, 1995-2006. BMC Public Health. 2010;10(1):1–6.

    Google Scholar 

  38. Donohue MJ. Increasing nontuberculous mycobacteria reporting rates and species diversity identified in clinical laboratory reports. BMC Infect Dis. 2018;18:1–9.

    Google Scholar 

  39. Tamura A, Hebisawa A, Sagara Y, Suzuki J, Masuda K, Baba M, et al. Pulmonary nontuberculous mycobacteriosis in patients with lung cancer. [Kekkaku]. Tuberculosis. 2004;79(6):367–73.

    PubMed  Google Scholar 

  40. Thomson RM. Changing epidemiology of pulmonary nontuberculous mycobacteria infections. Emerg Infect Dis. 2010;16(10):1576.

    PubMed  PubMed Central  Google Scholar 

  41. Thomson R, Donnan E, Konstantinos A. Notification of nontuberculous mycobacteria: an Australian perspective. Ann Am Thorac Soc. 2017;14(3):318–23.

    PubMed  Google Scholar 

  42. Lee H, Myung W, Koh WJ, Moon SM, Jhun BW. Epidemiology of nontuberculous mycobacterial infection, South Korea, 2007–2016. Emerg Infect Dis. 2019;25(3):569.

    PubMed  PubMed Central  Google Scholar 

  43. Kim YJ, Park EJ, Lee SH, Silwal P, Kim JK, Yang JS, Whang J, Jang J, Kim JM, Jo EK. Dimethyl itaconate is effective in host-directed antimicrobial responses against mycobacterial infections through multifaceted innate immune pathways. Cell Biosci. 2023;13(1):49.

    PubMed  PubMed Central  Google Scholar 

  44. Chan ED, Kaminska AM, Gill W, Chmura K, Feldman NE, Bai X, Floyd CM, Fulton KE, Huitt GA, Strand MJ, Iseman MD. Alpha-1-antitrypsin (AAT) anomalies are associated with lung disease due to rapidly growing mycobacteria and AAT inhibits mycobacterium abscessus infection of macrophages. Scand J Infect Dis. 2007;39(8):690–6.

    CAS  PubMed  Google Scholar 

  45. Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, Zariwala MA, Knowles MR. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med. 2004;169(4):459–67.

    PubMed  Google Scholar 

  46. Tomii K, Iwata T, Oida K, Kohri Y, Taguchi Y, Nanbu Y, Kubo Y, Yaba Y, Mino M, Kuroda Y. A probable case of adult Williams-Campbell syndrome incidentally detected by an episode of atypical mycobacterial infection. Jpn J Thorac Dis. 1989;27(4):518–22.

    CAS  Google Scholar 

  47. Uji M, Matsushita H, Watanabe T, Suzumura T, Yamada M. A case of primary Sjögren's syndrome presenting with middle lobe syndrome complicated by nontuberculous mycobacteriosis. Nihon Kokyuki Gakkai Zasshi. 2008;46(1):55–9.

    PubMed  Google Scholar 

  48. Witty LA, Tapson VF, Piantadosi CA. Isolation of mycobacteria in patients with pulmonary alveolar proteinosis. Medicine. 1994;73(2):103–9.

    CAS  PubMed  Google Scholar 

  49. Rosenzweig DY. Pulmonary mycobacterial infections due to mycobacterium intracellulare-avium complex: clinical features and course in 100 consecutive cases. Chest. 1979;75(2):115–9.

    CAS  PubMed  Google Scholar 

  50. Sonnenberg P, Murray J, Thomas RG, Godfrey-Faussett P, Shearer S. Risk factors for pulmonary disease due to culture-positive M. tuberculosis or nontuberculous mycobacteria in south African gold miners. Eur Respir J. 2000;15(2):291–6.

    CAS  PubMed  Google Scholar 

  51. Griffith DE, Girard WM, Wallace RJ Jr. Clinical features of pulmonary disease caused by rapidly growing mycobacteria. Am Rev Respir Dis. 1993;147:1271–8.

    CAS  PubMed  Google Scholar 

  52. Okumura M, Iwai K, Ogata H, Ueyama M, Kubota M, Aoki M, Kokuto H, Tadokoro E, Uchiyama T, Saotome M, Yoshiyama T. Clinical factors on cavitary and nodular bronchiectatic types in pulmonary Mycobacterium avium complex disease. Intern Med. 2008;47(16):1465–72.

    PubMed  Google Scholar 

  53. Prince DS, Peterson DD, Steiner RM, Gottlieb JE, Scott R, Israel HL, Figueroa WG, Fish JE. Infection with Mycobacterium avium complex in patients without predisposing conditions. N Engl J Med. 1989;321(13):863–8.

    CAS  PubMed  Google Scholar 

  54. Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, Reacher M, Haworth CS, Curran MD, Harris SR, Peacock SJ. Whole-genome sequencing to identify transmission of mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381(9877):1551–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, Verma D, Hill E, Drijkoningen J, Gilligan P, Esther CR. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2016;354(6313):751–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. McGarvey J, Bermudez LE. Pathogenesis of nontuberculous mycobacteria infections. Clin Chest Med. 2002;23(3):569–83.

    PubMed  Google Scholar 

  57. Rose SJ, Bermudez LE. Mycobacterium avium biofilm attenuates mononuclear phagocyte function by triggering hyperstimulation and apoptosis during early infection. Infect Immun. 2014;82(1):405–12.

    PubMed  PubMed Central  Google Scholar 

  58. Puzo G. The carbohydrate-and lipid-containing cell wall of mycobacteria, phenolic glycolipids: structure and immunological properties. Crit Rev Microbiol. 1990;17(4):305–27.

    CAS  PubMed  Google Scholar 

  59. Pourshafie MR, Sonnenfeld G, Barrow WW. Immunological and ultrastructural disruptions of T lymphocytes following exposure to the glycopeptidolipid isolated from the Mycobacterium avium complex. Scand J Immunol. 1999;49(4):405–10.

    CAS  PubMed  Google Scholar 

  60. Barrow WW, De Sousa JP, Davis TL, Wright EL, Bachelet M, Rastogi N. Immunomodulation of human peripheral blood mononuclear cell functions by defined lipid fractions of Mycobacterium avium. Infect Immun. 1993;61(12):5286–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Enomoto K, Oka S, Fujiwara N, Okamoto T, Okuda Y, Maekura R, Kuroki T, Yano I. Rapid serodiagnosis of Mycobacterium avium-intracellulare complex infection by ELISA with cord factor (trehalose 6, 6′-dimycolate), and serotyping using the glycopeptidolipid antigen. Microbiol Immunol. 1998;42(10):689–96.

    CAS  PubMed  Google Scholar 

  62. Freeman R, Geier H, Weigel KM, Do J, Ford TE, Cangelosi GA. Roles for cell wall glycopeptidolipid in surface adherence and planktonic dispersal of Mycobacterium avium. Appl Environ Microbiol. 2006;72(12):7554–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Howard ST, Rhoades E, Recht J, Pang X, Alsup A, Kolter R, Lyons CR, Byrd TF. Spontaneous reversion of mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology. 2006;152(6):1581–90.

    CAS  PubMed  Google Scholar 

  64. Vignal C, Guérardel Y, Kremer L, Masson M, Legrand D, Mazurier J, Elass E. Lipomannans, but not lipoarabinomannans, purified from mycobacterium chelonae and mycobacterium kansasii induce TNF-α and IL-8 secretion by a CD14-toll-like receptor 2-dependent mechanism. J Immunol. 2003;171(4):2014–23.

    CAS  PubMed  Google Scholar 

  65. Wieland CW, Knapp S, Florquin S, de Vos AF, Takeda K, Akira S, Golenbock DT, Verbon A, van der Poll T. Non–mannose-capped Lipoarabinomannan induces lung inflammation via toll-like receptor 2. Am J Respir Crit Care Med. 2004;170(12):1367–74.

    PubMed  Google Scholar 

  66. Maeda N, Nigou J, Herrmann JL, Jackson M, Amara A, Lagrange PH, Puzo G, Gicquel B, Neyrolles O. The cell surface receptor DC-SIGN discriminates between mycobacterium species through selective recognition of the mannose caps on Lipoarabinomannan. J Biol Chem. 2003;278(8):5513–6.

    CAS  PubMed  Google Scholar 

  67. Matsuyama M, Martins AJ, Shallom S, Kamenyeva O, Kashyap A, Sampaio EP, Kabat J, Olivier KN, Zelazny AM, Tsang JS, Holland SM. Transcriptional response of respiratory epithelium to nontuberculous mycobacteria. Am J Respir Cell Mol Biol. 2018;58(2):241–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Henkle E. Spotlight on NTM lung disease.

    Google Scholar 

  69. Sexton P, Harrison AC. Susceptibility to nontuberculous mycobacterial lung disease. Eur Respir J. 2008;31(6):1322–33.

    CAS  PubMed  Google Scholar 

  70. Honda JR, Knight V, Chan ED. Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clin Chest Med. 2015;36(1):1.

    PubMed  Google Scholar 

  71. Cowman S, Burns K, Benson S, Wilson R, Loebinger MR. The antimicrobial susceptibility of non-tuberculous mycobacteria. J Infect. 2016;72(3):324–31.

    CAS  PubMed  Google Scholar 

  72. Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. Mycobacterium abscessus complex infections in humans. Emerg Infect Dis. 2015;21(9):1638.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chin KL, Sarmiento ME, Alvarez-Cabrera N, Norazmi MN, Acosta A. Pulmonary non-tuberculous mycobacterial infections: current state and future management. Eur J Clin Microbiol Infect Dis. 2020;39:799–826.

    PubMed  Google Scholar 

  74. Thornton CS, Mellett M, Jarand J, Barss L, Field SK, Fisher DA. The respiratory microbiome and nontuberculous mycobacteria: an emerging concern in human health. Eur Respir Rev. 2021;30(160):200299.

    PubMed  PubMed Central  Google Scholar 

  75. Zweijpfenning SM, van Ingen J, Hoefsloot W. Geographic distribution of nontuberculous mycobacteria isolated from clinical specimens: a systematic review. In: Seminars in respiratory and critical care medicine, vol. 39. New York: Thieme Medical; 2018. p. 336–42.

    Google Scholar 

  76. Modrá H, Ulmann V, Caha J, Hübelová D, Konečný O, Svobodová J, Weston RT, Pavlík I. Socio-economic and environmental factors related to spatial differences in human non-tuberculous mycobacterial diseases in The Czech Republic. Int J Environ Res Public Health. 2019;16(20):3969.

    PubMed  PubMed Central  Google Scholar 

  77. Kotilainen H, Valtonen V, Tukiainen P, Poussa T, Eskola J, Järvinen A. Clinical findings in relation to mortality in non-tuberculous mycobacterial infections: patients with Mycobacterium avium complex have better survival than patients with other mycobacteria. Eur J Clin Microbiol Infect Dis. 2015;34:1909–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Victoria L, Gupta A, Gómez JL, Robledo J. Mycobacterium abscessus complex: a review of recent developments in an emerging pathogen. Front Cell Infect Microbiol. 2021;11:659997.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Park IK, Olivier KN. Nontuberculous mycobacteria in cystic fibrosis and non–cystic fibrosis bronchiectasis. In: Seminars in respiratory and critical care medicine, vol. 36. New York: Thieme Medical; 2015. p. 217–24.

    Google Scholar 

  80. Ratnatunga CN, Lutzky VP, Kupz A, Doolan DL, Reid DW, Field M, Bell SC, Thomson RM, Miles JJ. The rise of non-tuberculosis mycobacterial lung disease. Front Immunol. 2020;11:303.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bonaiti G, Pesci A, Marruchella A, Lapadula G, Gori A, Aliberti S. Nontuberculous mycobacteria in noncystic fibrosis bronchiectasis. Biomed Res Int. 2015;2015:1.

    Google Scholar 

  82. Valour F, Perpoint T, Sénéchal A, Kong XF, Bustamante J, Ferry T, Chidiac C, Ader F. Interferon-γ autoantibodies as predisposing factor for nontuberculous mycobacterial infection. Emerg Infect Dis. 2016;22:1124.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu UI, Holland SM. A genetic perspective on granulomatous diseases with an emphasis on mycobacterial infections. In: Seminars in immunopathology, vol. 38. Berlin, Heidelberg: Springer; 2016. p. 199–212.

    Google Scholar 

  84. Gerriets V, Goyal A, Khaddour K. Tumor necrosis factor inhibitors. In: StatPearls. Treasure Island, FL: StatPearls; 2021.

    Google Scholar 

  85. Olivier KN. Lady Windermere dissected: more form than fastidious. Ann Am Thorac Soc. 2016;13(10):1674–6.

    PubMed  PubMed Central  Google Scholar 

  86. O’Donnell AE, Barker AF, Ilowite JS, Fick RB, rhDNase Study Group. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. Chest. 1998;113(5):1329–34.

    PubMed  Google Scholar 

  87. Olivier KN, Weber DJ, Wallace RJ Jr, Faiz AR, Lee JH, Zhang Y, Brown-Elliot BA, Handler A, Wilson RW, Schechter MS, Edwards LJ. Nontuberculous mycobacteria: I: multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med. 2003;167(6):828–34.

    PubMed  Google Scholar 

  88. Tanaka E, Amitani R, Niimi A, Suzuki K, Murayama T, Kuze F. Yield of computed tomography and bronchoscopy for the diagnosis of Mycobacterium avium complex pulmonary disease. Am J Respir Crit Care Med. 1997;155(6):2041–6.

    CAS  PubMed  Google Scholar 

  89. Chung MJ, Lee KS, Koh WJ, Lee JH, Kim TS, Kwon OJ, Kim S. Thin-section CT findings of nontuberculous mycobacterial pulmonary diseases: comparison between Mycobacterium avium-intracellulare complex and mycobacterium abscessus infection. J Korean Med Sci. 2005;20(5):777–83.

    PubMed  PubMed Central  Google Scholar 

  90. Koh WJ, Lee KS, Kwon OJ, Jeong YJ, Kwak SH, Kim TS. Bilateral bronchiectasis and bronchiolitis at thin-section CT: diagnostic implications in nontuberculous mycobacterial pulmonary infection. Radiology. 2005;235(1):282–8.

    PubMed  Google Scholar 

  91. Wickremasinghe M, Ozerovitch LJ, Davies G, Wodehouse T, Chadwick MV, Abdallah S, Shah P, Wilson R. Non-tuberculous mycobacteria in patients with bronchiectasis. Thorax. 2005;60(12):1045–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kwak N, Lee JH, Kim HJ, Kim SA, Yim JJ. New-onset nontuberculous mycobacterial pulmonary disease in bronchiectasis: tracking the clinical and radiographic changes. BMC Pulm Med. 2020;20(1):1–7.

    Google Scholar 

  93. Yin H, Gu X, Wang Y, Fan G, Lu B, Liu M, Wang C, Cao B, Wang C. Clinical characteristics of patients with bronchiectasis with nontuberculous mycobacterial disease in mainland China: a single center cross-sectional study. BMC Infect Dis. 2021;21(1):1–2.

    Google Scholar 

  94. Eisenberg I, Yasin A, Fuks L, Stein N, Saliba W, Kramer MR, Adir Y, Shteinberg M. Radiologic characteristics of non-tuberculous mycobacteria infection in patients with bronchiectasis. Lung. 2020;198:715–22.

    CAS  PubMed  Google Scholar 

  95. Mirsaeidi M, Machado RF, Garcia JG, Schraufnagel DE. Nontuberculous mycobacterial disease mortality in the United States, 1999–2010: a population-based comparative study. PloS One. 2014;9(3):e91879.

    PubMed  PubMed Central  Google Scholar 

  96. Ballarino GJ, Olivier KN, Claypool RJ, Holland SM, Prevots DR. Pulmonary nontuberculous mycobacterial infections: antibiotic treatment and associated costs. Respir Med. 2009;103(10):1448–55.

    PubMed  PubMed Central  Google Scholar 

  97. Szymanski EP, Leung JM, Fowler CJ, Haney C, Hsu AP, Chen F, Duggal P, Oler AJ, McCormack R, Podack E, Drummond RA. Pulmonary nontuberculous mycobacterial infection. A multisystem, multigenic disease. Am J Respir Crit Care Med. 2015;192(5):618–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bandoh S, Fujita J, Ueda Y, Tojo Y, Ishii T, Kubo A, Yamamoto Y, NlSHIYAMA Y, Ishida T. Uptake of fluorine-18-fluorodeoxyglucose in pulmonary Mycobacterium avium complex infection. Intern Med. 2003;42(8):726–9.

    PubMed  Google Scholar 

  99. Lacasse Y, Girard M, Cormier Y. Recent advances in hypersensitivity pneumonitis. Chest. 2012;142(1):208–17.

    PubMed  Google Scholar 

  100. Winthrop KL, McNelley E, Kendall B, Marshall-Olson A, Morris C, Cassidy M, et al. Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: an emerging public health disease. Am J Respir Crit Care Med. 2010;182(7):977–82.

    PubMed  Google Scholar 

  101. Tamura A, Hebisawa A, Kusaka K, Hirose T, Suzuki J, Yamane A, et al. Relationship between lung cancer and Mycobacterium avium complex isolated using bronchoscopy. Open Respir Med J. 2016;10:20–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lande L, Peterson DD, Gogoi R, Daum G, Stampler K, Kwait R, et al. Association between pulmonary Mycobacterium avium complex infection and lung cancer. J Thorac Oncol. 2012;7(9):1345–51.

    PubMed  Google Scholar 

  103. Hong SJ, Kim TJ, Lee JH, Park JS. Nontuberculous mycobacterial pulmonary disease mimicking lung cancer: clinicoradiologic features and diagnostic implications. Medicine. 2016;95(26):e3978.

    PubMed  PubMed Central  Google Scholar 

  104. Taira N, Kawasaki H, Takahara S, Chibana K, Atsumi E, Kawabata T. The presence of coexisting lung cancer and non-tuberculous mycobacterium in a solitary mass. Am J Case Rep. 2018;19:748–51.

    PubMed  PubMed Central  Google Scholar 

  105. Kusumoto T, Asakura T, Suzuki S, Okamori S, Namkoong H, Fujiwara H, et al. Development of lung cancer in patients with nontuberculous mycobacterial lung disease. Respir Investig. 2019;57(2):157–64.

    PubMed  Google Scholar 

  106. Inoue R, Watanabe K, Saigusa Y, Hirama N, Hara Y, Kobayashi N, et al. Effect of coexisting advanced extrapulmonary solid cancer on progression of Mycobacterium avium complex lung disease. J Bras Pneumol. 2021;47(2):e20200520.

    PubMed  PubMed Central  Google Scholar 

  107. Conic J, Lapinel N, Ali J, Boulmay B. Association between non-tuberculous mycobacterial infection and aerodigestive cancers: a case series highlighting different features, sequence and association. Respir Med Case Rep. 2022;40:101751.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Buckingham SJ, Hansell DM. Aspergillus in the lung: diverse and coincident forms. Eur Radiol. 2003;13(8):1786–800.

    PubMed  Google Scholar 

  109. Gefter WB, Weingrad TR, Epstein DM, Ochs RH, Miller WT. ‘Semi-invasive’ pulmonary aspergillosis: a new look at the spectrum of aspergillus infections of the lung. Radiology. 1981;140(2):313–21.

    CAS  PubMed  Google Scholar 

  110. Böllert FG, Sime PJ, Macnee W, Crompton GK. Pulmonary mycobacterium malmoense and aspergillus infection: a fatal combination? Thorax. 1994;49(5):521–2.

    PubMed  PubMed Central  Google Scholar 

  111. Henkle E, Winthrop KL. Nontuberculous mycobacteria infections in immunosuppressed hosts. Clin Chest Med. 2015;36(1):91–9.

    PubMed  Google Scholar 

  112. Fowler SJ, French J, Screaton NJ, Foweraker J, Condliffe A, Haworth CS, et al. Nontuberculous mycobacteria in bronchiectasis: prevalence and patient characteristics. Eur Respir J. 2006;28(6):1204–10.

    CAS  PubMed  Google Scholar 

  113. Damaraju D, Jamieson F, Chedore P, Marras TK. Isolation of non-tuberculous mycobacteria among patients with pulmonary tuberculosis in Ontario, Canada. Int J Tuberc Lung Dis. 2013;17(5):676–81.

    CAS  PubMed  Google Scholar 

  114. Maliwan N, Zvetina JR. Pulmonary mycetoma following mycobacterium kansasii infection: report of seven cases. Arch Intern Med. 1985;145(12):2180–3.

    CAS  PubMed  Google Scholar 

  115. Johnston ID. Mycobacterium xenopi infection and aspergilloma. Tubercle. 1988;69(2):139–43.

    CAS  PubMed  Google Scholar 

  116. Hafeez I, Muers MF, Murphy SA, Evans EG, Barton RC, McWhinney P. Non-tuberculous mycobacterial lung infection complicated by chronic necrotising pulmonary aspergillosis. Thorax. 2000;55(8):717–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mussaffi H, Rivlin J, Shalit I, Ephros M, Blau H. Nontuberculous mycobacteria in cystic fibrosis associated with allergic bronchopulmonary aspergillosis and steroid therapy. Eur Respir J. 2005;25(2):324–8.

    CAS  PubMed  Google Scholar 

  118. Kunst H, Wickremasinghe M, Wells A, Wilson R. Nontuberculous mycobacterial disease and aspergillus-related lung disease in bronchiectasis. Eur Respir J. 2006;28(2):352–7.

    CAS  PubMed  Google Scholar 

  119. Phoompoung P, Chayakulkeeree M. Chronic pulmonary aspergillosis following nontuberculous mycobacterial infections: an emerging disease. J Fungi (Basel). 2020;6(4):346.

    CAS  PubMed  Google Scholar 

  120. Dorman SE, Holland SM. Interferon-γ and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev. 2000;11(4):321–33.

    CAS  PubMed  Google Scholar 

  121. Field SK, Fisher D, Cowie RL. Mycobacterium avium complex pulmonary disease in patients without HIV infection. Chest. 2004;126(2):566–81.

    PubMed  Google Scholar 

  122. Winthrop KL. Risk and prevention of tuberculosis and other serious opportunistic infections associated with the inhibition of tumor necrosis factor. Nat Clin Pract Rheumatol. 2006;2(11):602–10.

    CAS  PubMed  Google Scholar 

  123. Keane J. Tumor necrosis factor blockers and reactivation of latent tuberculosis. Clin Infect Dis. 2004;39(3):300–2.

    PubMed  Google Scholar 

  124. Wallis RS, Broder MS, Wong JY, Hanson ME, Beenhouwer DO. Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin Infect Dis. 2004;38(9):1261–5.

    CAS  PubMed  Google Scholar 

  125. Chan ED. Vulnerability to nontuberculous mycobacterial lung disease or systemic infection due to genetic/heritable disorders. In: Nontuberculous mycobacterial disease; 2019. p. 89–110.

    Google Scholar 

  126. Griffith DE, editor. Nontuberculous mycobacterial disease: a comprehensive approach to diagnosis and management. Berlin: Springer; 2018.

    Google Scholar 

  127. Choi S, Potts KJ, Althoff MD, Jimenez G, Bai X, Calhoun KM, et al. Histopathologic analysis of surgically resected lungs of patients with non-tuberculous mycobacterial lung disease: a retrospective and hypothesis-generating study. Yale J Biol Med. 2021;94(4):527–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Piccione JC, McPhail GL, Fenchel MC, Brody AS, Boesch RP. Bronchiectasis in chronic pulmonary aspiration: risk factors and clinical implications. Pediatr Pulmonol. 2012;47(5):447–52.

    PubMed  Google Scholar 

  129. Koh WJ, Lee JH, Kwon YS, Lee KS, Suh GY, Chung MP, et al. Prevalence of gastroesophageal reflux disease in patients with nontuberculous mycobacterial lung disease. Chest. 2007;131(6):1825–30.

    PubMed  Google Scholar 

  130. Thomson RM, Armstrong JG, Looke DF. Gastroesophageal reflux disease, acid suppression, and Mycobacterium avium complex pulmonary disease. Chest. 2007;131(4):1166–72.

    PubMed  Google Scholar 

  131. Kang JB, Lee DH, Kwon SH, Kim N, Park YS, Yoon H, et al. The prevalence of nontuberculous mycobacterial lung disease with orwithout reflux esophagitis. Korean J Gastroenterol. 2018;71(1):18–23.

    PubMed  Google Scholar 

  132. Carbajal M, Teneback CC. Environmental and infectious causes of bronchiectasis. In: Bronchiectasis. Cham: Springer International; 2022. p. 85–115.

    Google Scholar 

  133. Lipman M, Kunst H, Loebinger MR, Milburn HJ, King M. Non tuberculous mycobacteria pulmonary disease: patients and clinicians working together to improve the evidence base for care. Int J Infect Dis. 2021;113(Suppl 1):S73–7.

    PubMed  Google Scholar 

  134. Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ Jr, Andrejak C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis. 2020;71(4):e1–e36.

    PubMed  PubMed Central  Google Scholar 

  135. Kwon YS, Koh WJ. Diagnosis of pulmonary tuberculosis and nontuberculous mycobacterial lung disease in Korea. Tuberc Respir Dis. 2014;77(1):1–5.

    Google Scholar 

  136. Koh WJ, Yu CM, Suh GY, Chung MP, Kim H, Kwon OJ, et al. Pulmonary TB and NTM lung disease: comparison of characteristics in patients with AFB smear-positive sputum. Int J Tuberc Lung Dis. 2006;10(9):1001–7.

    CAS  PubMed  Google Scholar 

  137. Jeong YJ, Lee KS, Koh WJ, Han J, Kim TS, Kwon OJ. Nontuberculous mycobacterial pulmonary infection in immunocompetent patients: comparison of thin-section CT and histopathologic findings. Radiology. 2004;231(3):880–6.

    PubMed  Google Scholar 

  138. Lee G, Lee KS, Moon JW, Koh WJ, Jeong BH, Jeong YJ, et al. Nodular bronchiectatic Mycobacterium avium complex pulmonary disease. Natural course on serial computed tomographic scans. Ann Am Thorac Soc. 2013;10(4):299–306.

    PubMed  Google Scholar 

  139. Kim RD, Greenberg DE, Ehrmantraut ME, Guide SV, Ding L, Shea Y, et al. Pulmonary nontuberculous mycobacterial disease: prospective study of a distinct preexisting syndrome. Am J Respir Crit Care Med. 2008;178(10):1066–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kartalija M, Ovrutsky AR, Bryan CL, Pott GB, Fantuzzi G, Thomas J, et al. Patients with nontuberculous mycobacterial lung disease exhibit unique body and immune phenotypes. Am J Respir Crit Care Med. 2013;187(2):197–205.

    PubMed  PubMed Central  Google Scholar 

  141. Hollings NP, Wells AU, Wilson R, Hansell DM. Comparative appearances of non-tuberculous mycobacteria species: a CT study. Eur Radiol. 2002;12(9):2211–7.

    CAS  PubMed  Google Scholar 

  142. Song JW, Koh WJ, Lee KS, Lee JY, Chung MJ, Kim TS, et al. High-resolution CT findings of Mycobacterium avium-intracellulare complex pulmonary disease: correlation with pulmonary function test results. AJR Am J Roentgenol. 2008;191(4):W160.

    PubMed  Google Scholar 

  143. van Ingen J. Microbiological diagnosis of nontuberculous mycobacterial pulmonary disease. Clin Chest Med. 2015;36(1):43–54.

    PubMed  Google Scholar 

  144. van Ingen J. Diagnosis of nontuberculous mycobacterial infections. Semin Respir Crit Care Med. 2013;34(1):103–9.

    PubMed  Google Scholar 

  145. Pfyffer GE. Mycobacterium: general characteristics, laboratory detection, and staining procedures. In: Manual of clinical microbiology; 2015. p. 536–69.

    Google Scholar 

  146. Somoskövi Á, Hotaling JE, Fitzgerald M, O’Donnell D, Parsons LM, Salfinger M. Lessons from a proficiency testing event for acid-fast microscopy. Chest. 2001;120(1):250–7.

    Google Scholar 

  147. Norrby M. Clinical and prophylactic studies of human tuberculosis in a low-endemic setting. Doctoral dissertation. Sweden: Karolinska Institutet.

    Google Scholar 

  148. Guglielmetti L, Mougari F, Lopes A, Raskine L, Cambau E. Human infections due to nontuberculous mycobacteria: the infectious diseases and clinical microbiology specialists’ point of view. Future Microbiol. 2015;10(9):1467–83.

    CAS  PubMed  Google Scholar 

  149. Somoskovi A, Salfinger M. Nontuberculous mycobacteria in respiratory infections: advances in diagnosis and identification. Clin Lab Med. 2014;34(2):271–95.

    PubMed  Google Scholar 

  150. Macheras E, Roux AL, Ripoll F, Sivadon-Tardy V, Gutierrez C, Gaillard JL, et al. Inaccuracy of single-target sequencing for discriminating species of the mycobacterium abscessus group. J Clin Microbiol. 2009;47(8):2596–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev. 2003;16(2):319–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Frothingham R, Wilson KH. Sequence-based differentiation of strains in the Mycobacterium avium complex. J Bacteriol. 1993;175(10):2818–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ben Salah IB, Adékambi T, Raoult D, Drancourt M. rpoB sequence-based identification of Mycobacterium avium complex species. Microbiology. 2008;154(12):3715–23.

    CAS  PubMed  Google Scholar 

  154. Zelazny AM, Root JM, Shea YR, Colombo RE, Shamputa IC, Stock F, et al. Cohort study of molecular identification and typing of mycobacterium abscessus, Mycobacterium massiliense, and mycobacterium bolletii. J Clin Microbiol. 2009;47(7):1985–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Macheras E, Roux AL, Bastian S, Leão SC, Palaci M, Sivadon-Tardy V, et al. Multilocus sequence analysis and rpoB sequencing of mycobacterium abscessus (sensu lato) strains. J Clin Microbiol. 2011;49(2):491–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Jang MA, Koh WJ, Huh HJ, Kim SY, Jeon K, Ki CS, et al. Distribution of nontuberculous mycobacteria by multigene sequence-based typing and clinical significance of isolated strains. J Clin Microbiol. 2014;52(4):1207–12.

    PubMed  PubMed Central  Google Scholar 

  157. Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 2010;5(11):1733–54.

    CAS  PubMed  Google Scholar 

  158. Traxler RM, Bell ME, Lasker B, Headd B, Shieh WJ, McQuiston JR. Updated review on Nocardia species: 2006-2021. Clin Microbiol Rev. 2022;35(4):e0002721.

    PubMed  Google Scholar 

  159. Kodana M, Tarumoto N, Kawamura T, Saito T, Ohno H, Maesaki S, et al. Utility of the MALDI-TOF MS method to identify nontuberculous mycobacteria. J Infect Chemother. 2016;22(1):32–5.

    CAS  PubMed  Google Scholar 

  160. Mediavilla-Gradolph MC, De Toro-Peinado I, Bermúdez-Ruiz MP, García-Martínez MD, Ortega-Torres M, Montiel Quezel-Guerraz N, et al. Use of MALDI-TOF MS for identification of nontuberculous mycobacterium species isolated from clinical specimens. Biomed Res Int. 2015;2015:854078.

    PubMed  PubMed Central  Google Scholar 

  161. File TM Jr, Marrie TJ. Burden of community-acquired pneumonia in north American adults. Postgrad Med. 2010;122(2):130–41.

    PubMed  Google Scholar 

  162. Jethva K, Bhatt D, Zaveri M. Epidemiology of non-tuberculous mycobacteria in India: a review. J Pharmacogn Phytochem. 2019;8(3):954–9.

    Google Scholar 

  163. Brown-Elliott BA, Vasireddy S, Vasireddy R, Iakhiaeva E, Howard ST, Nash K, et al. Utility of sequencing the erm (41) gene in isolates of Mycobacterium abscessus subsp. abscessus with low and intermediate clarithromycin MICs. J Clin Microbiol. 2015;53(4):1211–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Ito Y, Hirai T, Maekawa K, Fujita K, Imai S, Tatsumi S, et al. Predictors of 5-year mortality in pulmonary Mycobacterium avium-intracellulare complex disease. Int J Tuberc Lung Dis. 2012;16(3):408–14.

    CAS  PubMed  Google Scholar 

  165. Park TY, Chong S, Jung JW, Park IW, Choi BW, Lim C, et al. Natural course of the nodular bronchiectatic form of Mycobacterium avium complex lung disease: long-term radiologic change without treatment. PloS One. 2017;12(10):e0185774.

    PubMed  PubMed Central  Google Scholar 

  166. Chae G, Park YE, Chong YP, Lee HJ, Shim TS, Jo KW. Treatment outcomes of cavitary nodular bronchiectatic-type Mycobacterium avium complex pulmonary disease. Antimicrob Agents Chemother. 2022;66(9):e0226121.

    PubMed  Google Scholar 

  167. Jeong BH, Jeon K, Park HY, Kim SY, Lee KS, Huh HJ, et al. Intermittent antibiotic therapy for nodular bronchiectatic Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2015;191(1):96–103.

    CAS  PubMed  Google Scholar 

  168. Daley CL. Mycobacterium avium complex disease. In: Tuberculosis and non-tuberculous mycobacteria infections; 2017. p. 663–701.

    Google Scholar 

  169. Koh WJ, Jeong BH, Jeon K, Lee SY, Shin SJ. Therapeutic drug monitoring in the treatment of Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2012;186(8):797–802.

    CAS  PubMed  Google Scholar 

  170. Lee BY, Kim S, Hong Y, Lee SD, Kim WS, Kim DS, et al. Risk factors for recurrence after successful treatment of Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2015;59(6):2972–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Park HE, Lee W, Choi S, Jung M, Shin MK, Shin SJ. Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection. Front Immunol. 2022;13:931876.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Adjemian J, Prevots DR, Gallagher J, Heap K, Gupta R, Griffith D. Lack of adherence to evidence-based treatment guidelines for nontuberculous mycobacterial lung disease. Ann Am Thorac Soc. 2014;11(1):9–16.

    PubMed  PubMed Central  Google Scholar 

  173. Jo KW, Kim S, Lee JY, Lee SD, Kim WS, Kim DS, et al. Treatment outcomes of refractory MAC pulmonary disease treated with drugs with unclear efficacy. J Infect Chemother. 2014;20(10):602–6.

    CAS  PubMed  Google Scholar 

  174. Jarand J, Davis JP, Cowie RL, Field SK, Fisher DA. Long-term follow-up of Mycobacterium avium complex lung disease in patients treated with regimens including clofazimine and/or rifampin. Chest. 2016;149(5):1285–93.

    PubMed  Google Scholar 

  175. Koh WJ, Hong G, Kim SY, Jeong BH, Park HY, Jeon K, et al. Treatment of refractory Mycobacterium avium complex lung disease with a moxifloxacin-containing regimen. Antimicrob Agents Chemother. 2013;57(5):2281–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Koh WJ, Jeon K, Lee NY, Kim BJ, Kook YH, Lee SH, et al. Clinical significance of differentiation of Mycobacterium massiliense from mycobacterium abscessus. Am J Respir Crit Care Med. 2011;183(3):405–10.

    PubMed  Google Scholar 

  177. Jeon K, Kwon OJ, Lee NY, Kim BJ, Kook YH, Lee SH, et al. Antibiotic treatment of mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am J Respir Crit Care Med. 2009;180(9):896–902.

    CAS  PubMed  Google Scholar 

  178. Lyu J, Jang HJ, Song JW, Choi CM, Oh YM, Do Lee SD, et al. Outcomes in patients with mycobacterium abscessus pulmonary disease treated with long-term injectable drugs. Respir Med. 2011;105(5):781–7.

    PubMed  Google Scholar 

  179. Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD, Daley CL. Clinical and microbiologic outcomes in patients receiving treatment for mycobacterium abscessus pulmonary disease. Clin Infect Dis. 2011;52(5):565–71.

    PubMed  Google Scholar 

  180. Lyu J, Kim BJ, Kim BJ, Song JW, Choi CM, Oh YM, et al. A shorter treatment duration may be sufficient for patients with Mycobacterium massiliense lung disease than with mycobacterium abscessus lung disease. Respir Med. 2014;108(11):1706–12.

    PubMed  Google Scholar 

  181. Kang HK, Park HY, Kim D, Jeong BH, Jeon K, Cho JH, et al. Treatment outcomes of adjuvant resectional surgery for nontuberculous mycobacterial lung disease. BMC Infect Dis. 2015;15(1):76.

    PubMed  PubMed Central  Google Scholar 

  182. van Ingen J, Totten SE, Helstrom NK, Heifets LB, Boeree MJ, Daley CL. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother. 2012;56(12):6324–7.

    PubMed  PubMed Central  Google Scholar 

  183. Shen GH, Wu BD, Hu ST, Lin CF, Wu KM, Chen JH. High efficacy of clofazimine and its synergistic effect with amikacin against rapidly growing mycobacteria. Int J Antimicrob Agents. 2010;35(4):400–4.

    CAS  PubMed  Google Scholar 

  184. Martiniano SL, Wagner BD, Levin A, Nick JA, Sagel SD, Daley CL. Safety and effectiveness of clofazimine for primary and refractory nontuberculous mycobacterial infection. Chest. 2017;152(4):800–9.

    PubMed  Google Scholar 

  185. Yang B, Jhun BW, Moon SM, Lee H, Park HY, Jeon K, et al. Clofazimine-containing regimen for the treatment of mycobacterium abscessus lung disease. Antimicrob Agents Chemother. 2017;61(6):e02052–16.

    PubMed  PubMed Central  Google Scholar 

  186. Carey GB, Tebas P, Vinnard C, Kim D, Hadjiliadis D, Hansen-Flaschen J, Dorgan D, Glaser L, Barton G, Hamilton KW. Clinical outcomes of clofazimine use for rapidly growing mycobacterial infections. In: InOpen forum infectious diseases, vol. 6. Oxford: Oxford University Press; 2019. p. ofz456.

    Google Scholar 

  187. Yagi K, Ishii M, Namkoong H, Asami T, Iketani O, Asakura T, et al. The efficacy, safety, and feasibility of inhaled amikacin for the treatment of difficult-to-treat non-tuberculous mycobacterial lung diseases. BMC Infect Dis. 2017;17:1–9.

    Google Scholar 

  188. Olivier KN, Shaw PA, Glaser TS, Bhattacharyya D, Fleshner M, Brewer CC, et al. Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann Am Thorac Soc. 2014;11(1):30–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Jhun BW, Yang B, Moon SM, Lee H, Park HY, Jeon K, et al. Amikacin inhalation as salvage therapy for refractory nontuberculous mycobacterial lung disease. Antimicrob Agents Chemother. 2018;62(7):e00011–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang J, Leifer F, Rose S, Chun DY, Thaisz J, Herr T, et al. Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front Microbiol. 2018;9:915.

    PubMed  PubMed Central  Google Scholar 

  191. Huang CW, Chen JH, Hu ST, Huang WC, Lee YC, Huang CC, et al. Synergistic activities of tigecycline with clarithromycin or amikacin against rapidly growing mycobacteria in Taiwan. Int J Antimicrob Agents. 2013;41(3):218–23.

    CAS  PubMed  Google Scholar 

  192. Cavusoglu C, Soyler I, Akinci P. Activities of linezolid against nontuberculous mycobacteria. New Microbiol. 2007;30(4):411–4.

    CAS  PubMed  Google Scholar 

  193. Winthrop KL, Ku JH, Marras TK, Griffith DE, Daley CL, Olivier KN, et al. The tolerability of linezolid in the treatment of nontuberculous mycobacterial disease. Eur Respir J. 2015;45(4):1177–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. MS DS, Shoen CM, Cynamon MH. Therapy for mycobacterium kansasii infection: beyond 2018. Front Microbiol. 2018;9:2271.

    Google Scholar 

  195. Alcaide F, Calatayud L, Santín M, Martín R. Comparative in vitro activities of linezolid, telithromycin, clarithromycin, levofloxacin, moxifloxacin, and four conventional antimycobacterial drugs against Mycobacterium kansasii. Antimicrob Agents Chemother. 2004;48(12):4562–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Suzuki T, Uneda K, Aoyagi R, Kobayashi T, Mitsuma T, Nakamoto H. Case report: Kampo medicine for non-tuberculous mycobacterium pulmonary disease. Front Nutr. 2021;8:761934.

    PubMed  PubMed Central  Google Scholar 

  197. Ito M, Koga Y, Hachisu Y, Murata K, Sunaga N, Maeno T, et al. Treatment strategies with alternative treatment options for patients with Mycobacterium avium complex pulmonary disease. Respir Investig. 2022;60(5):613–24.

    CAS  PubMed  Google Scholar 

  198. Nasiri MJ, Calcagno T, Hosseini SS, Hematian A, Nojookambari NY, Karimi-Yazdi M, et al. Role of clofazimine in treatment of Mycobacterium avium complex. Front Med. 2021;8:638306.

    Google Scholar 

  199. Bai X, Oberley-Deegan RE, Bai A, Ovrutsky AR, Kinney WH, Weaver M, et al. Curcumin enhances human macrophage control of mycobacterium tuberculosis infection. Respirology. 2016;21(5):951–7.

    PubMed  Google Scholar 

  200. Karuppagounder V, Arumugam S, Thandavarayan RA, Sreedhar R, Giridharan VV, Afrin R, et al. Curcumin alleviates renal dysfunction and suppresses inflammation by shifting from M1 to M2 macrophage polarization in daunorubicin induced nephrotoxicity in rats. Cytokine. 2016;84:1–9.

    CAS  PubMed  Google Scholar 

  201. Xu HD, You CG, Zhang RL, Gao P, Wang ZR. Effects of Astragalus polysaccharides and astragalosides on the phagocytosis of mycobacterium tuberculosis by macrophages. J Int Med Res. 2007;35(1):84–90.

    CAS  PubMed  Google Scholar 

  202. Qiu D, Zhao G, Aoki Y, Shi L, Uyei A, Nazarian S, et al. Immunosuppressant PG490 (triptolide) inhibits T-cell interleukin-2 expression at the level of purine-box/nuclear factor of activated T-cells and NF-κB transcriptional activation. J Biol Chem. 1999;274(19):13443–50.

    CAS  PubMed  Google Scholar 

  203. Chiang CY, Lee CC, Fan CK, Huang HM, Chiang BL, Lee YL. Osthole treatment ameliorates Th2-mediated allergic asthma and exerts immunomodulatory effects on dendritic cell maturation and function. Cell Mol Immunol. 2017;14(11):935–47.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreejith Parameswara Panicker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suresh, A., Kamath, G.S., Latheef, F., Sasikumar, G., Panicker, S.P. (2023). Nontuberculous Mycobacterium Infections in Lung Disease and Medical Interventions. In: Singh, A., Sharma, D. (eds) Diagnosis of Mycobacterium. Springer, Singapore. https://doi.org/10.1007/978-981-99-5624-1_13

Download citation

Publish with us

Policies and ethics