Skip to main content

Potential of Whey for Production of Value-Added Products Using Microbial Fermentations

  • Chapter
  • First Online:
Whey Valorization

Abstract

Whey being the green watery liquid produced through casein coagulation using rennet. Whey constitutes of milk solids (45–40%), milk sugar, i.e., lactose (70%), minerals (70–90%), proteins (20%) and vitamins (B and C) are available in milk. Whey is the major waste from dairy industry accounting for higher organic value of about 1,00,000 mg O2/L Chemical Oxygen Demand. So, food industries are keen to valorise this nutritional potential of whey. Whey with abundant nutrient and bioactive compounds can be used for formulation of nutraceutical and functional foods using various physical, chemical and biological approaches. In past few years, advanced biotechnological techniques have suggested new alternatives for processing of whey and its conversion into valuable products. Microbial fermentation refers as a green approach for bioconversion and valorisation for valuable outcome. Selective microbes can be used for converting this whey into organic acids, aroma compounds, bacteriocins, biopolymers, prebiotics, single cell proteins, enzymes and bio-alcohol etc. The selection of suitable microbial culture, process and ingredient optimisation is quite important in controlling the yield, quality and purity of finished product. So, there is huge scope of research in reinforce different microbes for whey valorisation for developing new sustainable products with some unique characteristics. This bioconversion of whey to value added products is most efficient in terms of product development and reduction in pollution level. This book chapter emphasises on microbial fermentation of whey as starting material for manufacturing of ingredients, beverage and eatables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aihara, K., Kajimoto, O., Hirata, H., Takahashi, R., & Nakamura, Y. (2005). Effect of powdered fermented milk with lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. Journal of the American College of Nutrition, 4, 257–265.

    Article  Google Scholar 

  • Alikunju, A. P., Joy, S., Rahiman, M., Rosmine, E., Antony, A. C., Solomon, S., & Hatha, A. M. (2018). A statistical approach to optimize cold active β-Galactosidase production by an arctic sediment pscychrotrophic bacteria, Enterobacter ludwigii (MCC 3423) in cheese whey. Catalysis Letters, 148, 712–724.

    Article  CAS  Google Scholar 

  • Alimoradi, F., Hojaji, E., Jooyandeh, H., Moghadam, S. A. H. Z., & Moludi, J. (2016). Whey proteins: Health benefits and food applications. Journal of International Research in Medical and Pharmaceutical Sciences, 9, 63–73.

    Google Scholar 

  • Alonso, S., Rendueles, M., & Dı’az M. (2013). Feeding strategies for enhanced lactobionic acid production from whey by pseudomonas taetrolens. Bioresource Technology, 134, 134–142.

    Article  CAS  PubMed  Google Scholar 

  • Amani, T., Nosrati, M., & Sreekrishnan, T. R. (2010). Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects—A review. Environmental Reviews, 18, 255–278.

    Article  CAS  Google Scholar 

  • Anupama, & Ravindra, P. (2000). Value-added food: Single cell protein. Biotechnology Advances, 18(6), 459–479.

    Article  CAS  PubMed  Google Scholar 

  • Arya, P., & Poonia, A. (2019). Effect of banana flour on composition and shelf life of concentrated whey incorporated bread. The Pharma Innovation Journal, 8(1), 616–621.

    CAS  Google Scholar 

  • Ballard, O., & Morrow, A. L. (2013). Human milk composition: Nutrients and bioactive factors. Pediatric Clinics of North America, 60(1), 49–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bentahar, J., Doyen, A., Beaulieu, L., & Deschênes, J. S. (2019). Acid whey permeate: An alternative growth medium for microalgae Tetradesmus obliquus and production of β-galactosidase. Algal Research, 41, 101559.

    Article  Google Scholar 

  • Bosco, F., & Chiampo, F. (2010). Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge: Production of bioplastics using dairy residues. Journal of Bioscience and Bioengineering, 109(4), 418–421.

    Article  CAS  PubMed  Google Scholar 

  • Bosso, A., Setti, A. C. I., Tomal, A. B., Guemra, S., Morioka, L. R. I., & Suguimoto, H. H. (2019). Substrate consumption and beta-galactosidase production by Saccharomyces fragilis IZ 275 grown in cheese whey as a function of cell growth rate. Biocatalysis and Agricultural Biotechnology, 21, 101335.

    Article  Google Scholar 

  • Buchanan, D., Martindale, W., Romeih, E., & Hebishy, E. (2023). Recent advances in whey processing and valorization: Technological and environmental perspectives. International Journal of Dairy Technology, 76, 291–312.

    Article  CAS  Google Scholar 

  • Chen, J. H., et al. (2013). A bovine whey protein extract can induce the generation of regulatory T cells and shows potential to alleviate asthma symptoms in a murine asthma model. The British Journal of Nutrition, 109(10), 1813–1820.

    Article  CAS  PubMed  Google Scholar 

  • Cladera-Olivera, F., Caron, G. R., & Brandelli, A. (2004). Bacteriocin production by bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochemical Engineering Journal, 21, 53–58.

    Article  CAS  Google Scholar 

  • Claeys, W., et al. (2014). Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control, 42, 188–201.

    Article  Google Scholar 

  • Cok, B., Tsiropoulos, I., Roes, A. L., & Patel, M. K. (2014). Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels, Bioproducts and Biorefining, 8, 16–29. https://doi.org/10.1002/BBB.1427

    Article  CAS  Google Scholar 

  • Das, B. K., Kalita, P., & Chakrabortty, M. (2016). Integrated biorefinery for food, feed, and platform chemicals. In Platform chemical biorefinery (pp. 393–416). Elsevier. ISBN 978–0–12-802980-0.

    Chapter  Google Scholar 

  • Donaghy, J. A., & McKay, A. M. (1994). Pectin extraction from citrus peel by polygalacturonase produced on whey. Bioresource Technology, 47(1), 25–28.

    Article  CAS  Google Scholar 

  • Espinosa-Gonzalez, I., Parashar, A., & Bressler, D. C. (2014). Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresource Technology, 155, 170–176.

    Article  CAS  PubMed  Google Scholar 

  • Faust, U. (1987). Production of microbial biomass. In P. Prave, U. Faust, W. Sittig, & D. A. Sukatsch (Eds.), Fundamentals of biotechnology (pp. 601–622). VCH Publishers.

    Google Scholar 

  • Fernández-Gutiérrez, D., Veillette, M., Giroir-Fendler, A., Ramirez, A. A., Faucheux, N., & Heitz, M. (2017). Biovalorization of saccharides derived from industrial wastes such as whey: A review. Reviews in Environmental Science and Biotechnology, 16, 147–174. [CrossRef].

    Article  Google Scholar 

  • Fialho, A. M., Martins, L. O., Donval, M. L., Leitao, J. H., Ridout, M. J., Jay, A. J., Morris, V. J., & Corria, I. (1999). Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Applied and Environmental Microbiology, 65, 2485–2491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franta, B. (2018). Early oil industry knowledge of CO2 and global warming. Nature Climate Change, 8, 1024–1025. [CrossRef].

    Article  Google Scholar 

  • Franta, B. (2021). Early oil industry disinformation on global warming. Environmental Politics, 30, 663–668. [CrossRef].

    Article  Google Scholar 

  • Gauthier, S. F., Pouliot, Y., & Saint-Sauveur, D. (2006). Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. International Dairy Journal, 16(11), 1315–1323.

    Article  CAS  Google Scholar 

  • Gomashe, A., Minakshi, P., & Gulhane, P. (2014). Liquid whey: A potential substrate for single cell protein production from Bacillus subtilis NCIM 2010. International Journal of Life sciences, 2(2), 119–123.

    Google Scholar 

  • Gopalakrishnan, B., Khanna, N., & Das, D. (2019). Dark-fermentative biohydrogen production. In Biohydrogen (pp. 79–122). Elsevier. ISBN 978–0–444-64203-5.

    Chapter  Google Scholar 

  • Guerra, N. P., Rua, M. L., & Pastrana, L. (2001). Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. International Journal of Food Microbiology, 70 Ž2001, 267–281.

    Article  Google Scholar 

  • Guo, M., & Wang, G. (2019). History of whey production and whey protein manufacturing. In M. Guo (Ed.), Whey protein production, chemistry, functionality, and applications (pp. 1–12). John Wiley & Sons.

    Chapter  Google Scholar 

  • Gutiérrez-Cortés, C., Suarez, H., Buitrago, G., Nero, L. A., & Todorov, S. D. (2018). Enhanced Bacteriocin production by Pediococcus pentosaceus 147 in co-culture with lactobacillus plantarum LE27 on cheese whey broth. Fronteirs in Microbiology, 9, 2952.

    Article  Google Scholar 

  • Hamad, E. M., et al. (2011). Protective effect of whey proteins against nonalcoholic fatty liver in rats. Lipids in Health and Disease, 10, 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hern’andez-Ledesma, B., D’avalos, A., Bartolom’e, B., & Amigo, L. (2005). Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS/MS. Journal of Agricultural and Food Chemistry, 53(3), 588–593.

    Article  Google Scholar 

  • Karim, A., & Aider, M. (2022). Bioconversion of electro-activated lactose, whey and whey permeate to produce single cell protein, ethanol, aroma volatiles, organic acids and fat by Kluyveromyces marxianus. International Dairy Journal, 129, 105334.

    Article  CAS  Google Scholar 

  • Kaur, R., Panwar, D., & Panesar, P. S. (2020). Biotechnological approach for valorization of whey for value-added products. In Food industry wastes: Assessment and recuperation of commodities (pp. 275–302). Academic. https://doi.org/10.1016/B978-0-12-817121-9.00013-9

    Chapter  Google Scholar 

  • Khan, M., Khan, S. S., Ahmed, Z., & Tanveer, A. (2010). Production of single cell protein from Saccharomyces cerevisiae by utilizing fruit wastes. Nanobiotechnica Universale, 1(2), 127–132.

    Google Scholar 

  • Koller, M., Hesse, P., Bona, R., Kutschera, C., Atlić, A., & Braunegg, G. (2007). Potential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromolecular Bioscience, 7(2), 218–226.

    Article  CAS  PubMed  Google Scholar 

  • Korhonen, H., & Pihlanto-Leppälä, A. (2004). Milk– derived bioactive peptides: Formation and prospects for health promotion. In Handbook of functional dairy products (pp. 109–124). CRC Press.

    Google Scholar 

  • Krissansen, G. W. (2007). Emerging health properties of whey proteins and their clinical implications. Journal of the American College of Nutrition, 26(6), 713S–723S.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A. S., Mody, K., & Jha, B. (2007). Bacterial exopolysaccharides—a perception. Journal of Basic Microbiology, 47, 103–117.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, R., Shinde, G., Chauhan, S. K., & Subramanian, V. (2018). Whey proteins: A potential ingredient for food industry-A review. Journal of Dairying, Foods and Home Sciences, 37(4), 283–290.

    Google Scholar 

  • Laursen, I., Briand, P., & Lykkesfeldt, A. (1990). Serum albumin as a modulator on growth of the human breast cancer cell line, MCF-7. Anticancer Research, 10(2A), 343–351.

    CAS  PubMed  Google Scholar 

  • Lavelli, V., & Beccalli, M. P. (2022). Cheese whey recycling in the perspective of the circular economy: Modeling processes and the supply chain to design the involvement of the small and medium enterprises. Trends in Food Science and Technology, 126, 86–98. [CrossRef].

    Article  CAS  Google Scholar 

  • Lifrah, E. V., Hourigan, J. A., Sleigh, R. W., & Johnson. (2000). New Wheys for lactose. Food Australia, 52, 120–125.

    Google Scholar 

  • Lima, D., Lazaro, C., Rodrigues, J., Ratusznei, S., & Zaiat, M. (2016). Optimization performance of an AnSBBR applied to biohydrogen production treating whey. Journal of Environmental Management, 169, 191–201. [CrossRef] [PubMed].

    Article  CAS  PubMed  Google Scholar 

  • Lima, E., Fernandes, J., & Cardarelli, H. (2017). Optimized fermentation of goat cheese whey with Lactococcus lactis for production of antilisterial bacteriocin-like substances. LWT - Food Science and Technology, 84, 710e716.

    Google Scholar 

  • Lin, S. K. C., Du, C., Koutinas, A., Wang, R., & Webb, C. (2008). Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochemical Engineering Journal, 41, 128–135. https://doi.org/10.1016/J.BEJ.2008.03.013

    Article  CAS  Google Scholar 

  • Lisowyj, M., & Wright, M. M. (2020). A review of biogas and an assessment of its economic impact and future role as a renewable energy source. Reviews in Chemical Engineering, 36, 401–421. [CrossRef].

    Article  Google Scholar 

  • Loss, G., et al. (2011). The protective effect of farm milk consumption on childhood asthma and atopy: The GABRIELA study. Journal of Allergy and Clinical Immunology, 128(4), 766–773.e4.

    Article  PubMed  Google Scholar 

  • Louaste, B., & Eloutassi, N. (2020). Succinic acid production from whey and lactose by ´ Actinobacillus succinogenes 130Z in batch fermentation. Biotechnology Reports, 27, e00481. https://doi.org/10.1016/J.BTRE.2020.E00481

    Article  PubMed  PubMed Central  Google Scholar 

  • Madureira, A. R., Pereira, C. I., Gomes, A. M., Pintado, M. E., & Xavier Malcata, F. (2007). Bovine whey proteins–overview on their main biological properties. Food Research International, 40, 1197–1211. https://doi.org/10.1016/j.foodres.2007.07.005

    Article  CAS  Google Scholar 

  • Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E., & Malcata, F. X. (2010). Invited review: Physiological properties of bioactive peptides obtained from whey proteins. Journal of Dairy Science, 93, 437–455.

    Article  CAS  PubMed  Google Scholar 

  • Mann, B., Kumari, A., Kumar, R., Sharma, R., Prajapati, K., Mahboob, S., et al. (2015). Antioxidant activity of whey protein hydrolysates in milk beverage system. Journal of Food Science and Technology, 52(6), 3235–3241.

    CAS  PubMed  Google Scholar 

  • Marshall, K. (2004). Therapeutic applications of whey protein. Alternative Medicine Review, 9(2), 136–156.

    PubMed  Google Scholar 

  • Menetrez, M. Y. (2012). An overview of algae biofuel production and potential environmental impact. Environmental Science & Technology, 46, 7073–7085.

    Article  CAS  Google Scholar 

  • Micke, P., Beeh, K. M., & Buhl, R. (2002). Effects of longterm supplementation with whey proteins on plasma glutathione levels of HIV-infected patients. European Journal of Nutrition, 41(1), 12–18.

    Article  CAS  PubMed  Google Scholar 

  • Motta, A. S., & Brandelli, A. (2003). Influence of growth conditions on bacteriocin production by Brevibacterium linens. Applied Microbiological Biotechnology, 62, 163–167.

    Article  CAS  Google Scholar 

  • Mulcahy, E. M. (2017). Preparation, characterisation and functional applications of whey protein-carbohydrate conjugates as food ingredients. University College Cork.

    Google Scholar 

  • Osama, A., Kishta, M. I., Dauletbaev, N., Kubow, S., & Lands, L. C. (2013). Pressurized whey protein can limit bacterial burden and protein oxidation in pseudomonas aeruginosa lung infection. Nutrition, 29, 1–7.

    Google Scholar 

  • Panesar, P. S., & Kennedy, J. F. (2012). Biotechnological approaches for the value addition of whey. Critical Reviews in Biotechnology, 32, 327–348.

    Article  CAS  PubMed  Google Scholar 

  • Panghal, A., Patidar, R., Jaglan, S., Chhikara, N., Khatkar, S. K., Gat, Y., & Sindhu, N. (2018). Whey valorization: Current options and future scenario–a critical review. Nutrition & Food Science, 48(3), 520–535.

    Article  Google Scholar 

  • Parodi, P. (2007). A role for milk proteins and their peptides in cancer prevention. Current Pharmaceutical Design, 13(8), 813–828.

    Article  CAS  PubMed  Google Scholar 

  • Patel, A. K., Vaisnav, N., Mathur, A., Gupta, R., & Tuli, D. K. (2016). Whey waste as potential feedstock for biohydrogen production. Renewable Energy, 98, 221–225. [CrossRef].

    Article  CAS  Google Scholar 

  • Pellegrini, A., Dettling, C., Thomas, U., & Hunziker, P. (2001). Isolation and characterization of four bactericidal domains in the bovine β-lactoglobulin. Biochimica et Biophysica Acta (BBA), 1526(2), 131–140. Pharmaceutical Sciences.

    Article  CAS  PubMed  Google Scholar 

  • Pihlanto-Lepp¨al¨a, A., Paakkari, I., Rinta-Koski, M., & Antila, P. (1997). Bioactive peptide derived from in vitro proteolysis of bovine β-lactoglobulin and its effect on smooth muscle. Journal of Dairy Research, 64(1), 149–155.

    Article  PubMed  Google Scholar 

  • Pollock, T. J. (1993). Gellan-related polysaccharides and the genus Sphingomonas. Journal of General Microbiology, 139, 1939–1945.

    Article  CAS  Google Scholar 

  • Poonia, A., & Pandey, S. (2023). Production of microbial pigments from whey and their applications: a review. Nutrition & Food Science, 53(2), 265–284. https://doi.org/10.1108/NFS-02-2022-0055

    Article  Google Scholar 

  • Romão, B. B., Silva, F. T. M., Costa, H. C. D. B., Carmo, T. S. D., Cardoso, S. L., Ferreira, J. D. S., Batista, F. R. X., & Cardoso, V. L. (2019). Alternative techniques to improve hydrogen production by dark fermentation. 3 Biotech, 9, 18. [CrossRef].

    Article  PubMed  PubMed Central  Google Scholar 

  • Saarela, M. (2007). Functional dairy products. Elsevier.

    Book  Google Scholar 

  • Sabo, S. S., Converti, A., Ichiwaki, S., & Oliveira, R. P. S. (2019). Bacteriocin production by lactobacillus plantarum ST16Pa in supplemented whey powder formulations. Journal of Dairy Science, 102, 87–99.

    Article  CAS  PubMed  Google Scholar 

  • Samtiya, M., Aluko, R. E., Dhewa, T., & Moreno-Rojas, J. M. (2021). Potential health benefits of plant food-derived bioactive components: An overview. Food, 10, 839.

    Article  CAS  Google Scholar 

  • Sharma, A., Mukherjee, S., Reddy Tadi, S. R., Ramesh, A., & Sivaprakasam, S. (2021). Kinetics of growth, plantaricin and lactic acid production in whey permeate based medium by probiotic Lactobacillus plantarum CRA52. LWT - Food Science and Technology, 139, 110744. https://doi.org/10.1016/J.LWT.2020.110744

    Article  CAS  Google Scholar 

  • Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5, 1532–1553.

    Article  CAS  Google Scholar 

  • Sharma, N., & Gautam, N. (2007). Antimicrobial activity and characterization of bacteriocin of bacillus mycoides isolated from whey. Indian Journal of Biotechnology, 7, 117–121.

    Google Scholar 

  • Silva, M. F., Fornari, R. C. G., Mazutti, M. A., Oliveira, D., Padilha, F. F., Cichoski, A. J., Cansian, R. L., Luccio, M. D., & Treichel, H. (2009). Production and characterization of xanthan gum by xanthomonas campestris using cheese whey as sole carbon source. Journal of Food Engineering, 90, 119–123.

    Article  CAS  Google Scholar 

  • Sinha, R., Radha, C., Jamuna, P., & Purnima, K. (2007). Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation. Food Chemistry, 101(4), 1484–1491.

    Article  CAS  Google Scholar 

  • Smithers, G. W. (2008). Whey and whey proteins—From “gutter-to-gold. International Dairy Journal, 18(7), 695–704. https://doi.org/10.1016/j.idairyj.2008.03.008

    Article  CAS  Google Scholar 

  • Spălăţelu, C. (2012). Biotechnological valorisation of whey. Innovative Romanian Food Biotechnology, 10, 1–8.

    Google Scholar 

  • Sutherland, I. W. (1998). Novel and established applications of microbial polysaccharides. Trends in Biotechnology, 16, 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Tavares, T., del Mar Contreras, M., Amorim, M., Pintado, M., Recio, I., & Malcata, F. X. (2011). Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: In vitro effect and stability to gastrointestinal enzymes. Peptides, 32(5), 1013–1019.

    Article  CAS  PubMed  Google Scholar 

  • Th’eolier, J., Hammami, R., Labelle, P., Fliss, I., & Jean, J. (2013). Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate. Journal of Functional Foods, 5(2), 706–714.

    Article  Google Scholar 

  • Tian, H., Li, J., Yan, M., Tong, Y. W., Wang, C.-H., & Wang, X. (2019). Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective. Applied Energy, 256, 113961. [CrossRef].

    Article  CAS  Google Scholar 

  • Toden, S., et al. (2007). Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch. The British Journal of Nutrition, 97(3), 535–543.

    Article  CAS  PubMed  Google Scholar 

  • Trachootham, D., Lu, W., Ogasawara, M. A., Valle, N. R. D., & Huang, P. (2008). Redox regulation of cell survival. Antioxidants & Redox Signaling, 10, 1343_1374.

    Article  Google Scholar 

  • Tsolcha, O. N., Tekerlekopoulou, A. G., Akratos, C. S., Bellou, S., Aggelis, G., Katsiapi, M., Moustaka-Gouni, M., & Vayenas, D. V. (2016). Treatment of second cheese whey effluents using a Choricystis-based system with simultaneous lipid production. Journal of Chemical Technology and Biotechnology, 91, 2349–2359. [CrossRef].

    Article  CAS  Google Scholar 

  • Vorland, L. H., & Rekdal, Q. (2002). Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Research, 22, 2703–2710.

    PubMed  Google Scholar 

  • Wang, Z. T., Ullrich, N., Joo, S., Waffenschmidt, S., & Goodenough, U. (2009). Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell, 8, 1856–1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Q., Selke, S., & Mohanty, A. K. (2007). Processing and properties of biobased blends from soy meal and natural rubber. Macromolecular Materials and Engineering, 292(10–11), 1149–1157.

    Article  CAS  Google Scholar 

  • Xu, Q., Hong, H., Wu, J., & Yan, X. (2019). Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends in Food Science and Technology, 86, 399–411.

    Article  CAS  Google Scholar 

  • Yadav, J. S. S., Yan, S., Ajila, C. M., Bezawada, J., Tyagi, R. D., & Surampalli, R. Y. (2016). Food-grade single-cell protein production, characterization and ultrafiltration recovery of residual fermented whey proteins from whey. Food and Bioproducts Processing, 99, 156–165.

    Article  CAS  Google Scholar 

  • Yoro, K. O., & Daramola, M. O. (2022). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture. J. Fungi (Vol. 8, pp. 3–28). Woodhead Publishing.

    Google Scholar 

  • You, S., Chang, H., Yin, Q., Qi, W., Wang, M., Su, R., & He, Z. (2017). Utilization of whey powder as substrate for low-cost preparation of β-galactosidase as main product, and ethanol as by-product, by a litre-scale integrated process. Bioresource Technology, 245, 1271–1276.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khurana, S., Kankarwal, P., Saini, J., Panghal, P., Panghal, A., Chhikara, N. (2023). Potential of Whey for Production of Value-Added Products Using Microbial Fermentations. In: Poonia, A., Trajkovska Petkoska, A. (eds) Whey Valorization. Springer, Singapore. https://doi.org/10.1007/978-981-99-5459-9_7

Download citation

Publish with us

Policies and ethics