Skip to main content

Glasses with Hyperordered Structures

  • Chapter
  • First Online:
Hyperordered Structures in Materials

Part of the book series: The Materials Research Society Series ((MRSS))

  • 197 Accesses

Abstract

Glass has been considered a disordered material. However, recent advances in the structural analyses of oxide glasses have shown a degree of “order in disorder” at various scales in their atomic arrangements. This chapter describes oxide glasses with “hyperordered structures,” expanding on “order in disorder” in amorphous materials. Some classical criteria for glass formation are briefly summarized to understand oxide glass. The criteria were constructed through structural insights into the atomic arrangements of oxide glasses from Zachariasen and Sun and have been widely accepted hitherto. Recent findings on characteristic atomic arrangements in various glass systems that have been shown by effective combinations of experiments and calculations are introduced. The structure of silica glass, including the size and distribution of voids in the network structure, can be controlled using temperature and pressure to improve optical transmission by decreasing Rayleigh scattering. The structural information obtained using the newly developed mathematical method, the persistent homology analysis, provides clues to understanding the hyperordered structural origin of the well-known mixed alkali effect observed in alkali-silicate glasses. Oxide glasses with few or no network formers, prepared using a levitation technique, are also among examples of hyperordered structures due to their characteristic glass structures with high packing density. Furthermore, the reduced atomic arrangement (RAA) method was introduced to visualize the hyperordered structures of amorphous In2O3–ZnO films. Finally, the slight displacement from the ordered atomic arrangement, deduced from the RAA method, is shown to be one of the possible viewpoints that induce a unified understanding of the hyperordered atomic arrangement of densely packed oxide glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angell CA (1995) Science 267:1924

    Article  CAS  Google Scholar 

  2. Angell CA (2008) J Non-Cryst Solids 354:4703

    Article  CAS  Google Scholar 

  3. Glorieux B, Saboungi M-L, Millot F, Enderby J, Rifflet J-C (2001) AIP Conf Proc 552:316

    Article  CAS  Google Scholar 

  4. Paradis P-F, Ishikawa T (2005) Jpn J Appl Phys 44:5082

    Article  CAS  Google Scholar 

  5. Grishchenko D (2010) High Temp-High Press 40:127

    Google Scholar 

  6. Tamaru H, Koyama C, Saruwatari H, Nakamura Y, Ishikawa T, Takada T (2018) Microgravity Sci Technol 30:643

    Article  CAS  Google Scholar 

  7. Kondo T, Muta H, Kurosaki K, Kargl F, Yamaji A, Furuya M, Ohishi Y (2019) Heliyon 5:e02049

    Article  Google Scholar 

  8. Ishikawa T, Paradis P-F, Koyama C (2022) Front Mater 9:954126

    Article  Google Scholar 

  9. Ishikawa T, Koyama C, Oda H, Saruwatari H, Paradis P-F (2022) Int J Microgravity Sci Appl 39:12

    Google Scholar 

  10. Zachariasen WH (1932) J Am Chem Soc 54:3841

    Article  CAS  Google Scholar 

  11. Masuno A, Nishiyama N, Sato F, Kitamura N, Taniguchi T, Inoue H (2016) RSC Adv 6:19144

    Article  CAS  Google Scholar 

  12. Sun K-H (1947) J Am Ceram Soc 30:277

    Article  CAS  Google Scholar 

  13. Griscom DL (1991) J Ceram Soc Jpn 99:923

    Article  CAS  Google Scholar 

  14. Ono M, Nishii J (2022) J Ceram Soc Japan 130:558

    Article  CAS  Google Scholar 

  15. Tamura Y, Sakuma H, Morita K, Suzuki M, Yamamoto Y, Shimada K, Honma Y, Sohma K, Fujii T, Hasegawa T. In Optical Fiber Communication Conference Postdeadline Papers (OSA, Los Angeles, California, 2017), p. Th5D.1

    Google Scholar 

  16. Saito K, Yamaguchi M, Kakiuchida H, Ikushima AJ, Ohsono K, Kurosawa Y (2003) Appl Phys Lett 83:5175

    Article  CAS  Google Scholar 

  17. Ono M, Hara K, Fujinami M, Ito S (2012) Appl Phys Lett 101:164103

    Article  Google Scholar 

  18. Ono M (2021) J Lightwave Technol 39:5258

    Article  CAS  Google Scholar 

  19. Ono M, Aoyama S, Fujinami M, Ito S (2018) Opt Express 26:7942

    Article  CAS  Google Scholar 

  20. Guerette M, Ackerson MR, Thomas J, Yuan F, Bruce Watson E, Walker D, Huang L (2015) Sci Rep 5:15343

    Google Scholar 

  21. Yang Y, Homma O, Urata S, Ono M, Mauro JC (2020) Npj Comput Mater 6:139

    Article  CAS  Google Scholar 

  22. Onodera Y, Kohara S, Salmon PS, Hirata A, Nishiyama N, Kitani S, Zeidler A, Shiga M, Masuno A, Inoue H, Tahara S, Polidori A, Fischer HE, Mori T, Kojima S, Kawaji H, Kolesnikov AI, Stone MB, Tucker MG, McDonnell MT, Hannon AC, Hiraoka Y, Obayashi I, Nakamura T, Akola J, Fujii Y, Ohara K, Taniguchi T, Sakata O (2020) NPG Asia Mater 12:85

    Article  CAS  Google Scholar 

  23. Kohara S (2022) J Ceram Soc Jpn 130:531

    Article  CAS  Google Scholar 

  24. Hiraoka Y, Nakamura T, Hirata A, Escolar EG, Matsue K, Nishiura Y (2016) Proc Natl Acad Sci USA 113:7035

    Article  CAS  Google Scholar 

  25. Obayashi I, Nakamura T, Hiraoka Y (2022) J Phys Soc Jpn 91:091013

    Article  Google Scholar 

  26. Volf MB (1988) Mathematical approach to glass. Elsevier

    Google Scholar 

  27. Inoue H, Masuno A, Watanabe Y, Suzuki K, Iseda T (2012) J Am Ceram Soc 95:211

    Article  CAS  Google Scholar 

  28. INTERGLAD, https://www.interglad.jp/interglad8/

  29. SciGLASS, http://www.akosgmbh.de/sciglass/sciglass.htm

  30. Isard JO (1969) J Non-Cryst Solids 1:235

    Article  CAS  Google Scholar 

  31. Day DE (1976) J Non-Cryst Solids 21:343

    Article  CAS  Google Scholar 

  32. Maass P, Bunde A, Ingram MD (1992) Phys Rev Lett 68:3064

    Article  CAS  Google Scholar 

  33. Huang C, Cormack AN (1992) J Mater Chem 2:7

    Article  CAS  Google Scholar 

  34. Greaves GN, Ngai KL (1995) Phys Rev B 52:6358

    Article  CAS  Google Scholar 

  35. Park B, Cormack AN (1999) J Non-Cryst Solids 255:112

    Article  CAS  Google Scholar 

  36. Swenson J, Adams S (2003) Phys Rev Lett 90:155507

    Article  Google Scholar 

  37. Dyre JC, Maass P, Roling B, Sidebottom DL (2009) Rep Prog Phys 72:046501

    Article  Google Scholar 

  38. Wilkinson CJ, Potter AR, Welch RS, Bragatto C, Zheng Q, Bauchy M, Affatigato M, Feller SA, Mauro JC (2019) J Phys Chem B 123:7482

    Article  CAS  Google Scholar 

  39. Onodera Y, Takimoto Y, Hijiya H, Taniguchi T, Urata S, Inaba S, Fujita S, Obayashi I, Hiraoka Y, Kohara S (2019) NPG Asia Mater 11:75

    Article  CAS  Google Scholar 

  40. Weber JKR (2010) Int J Appl Glass Sci 1:248

    Article  CAS  Google Scholar 

  41. Price DL (2010) High-Temperature Levitated Materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  42. Masuno A, Arai Y, Yu J (2008) Ph Transit 81:553

    Article  CAS  Google Scholar 

  43. Magome E, Moriyoshi C, Kuroiwa Y, Masuno A, Inoue H (2010) Jpn J Appl Phys 49:09ME06

    Google Scholar 

  44. Masuno A, Ishimoto A, Moriyoshi C, Kawaji H, Kuroiwa Y, Inoue H (2015) Inorg Chem 54:9432

    Article  CAS  Google Scholar 

  45. Masuno A (2022) J Ceram Soc Jpn 130:563

    Article  CAS  Google Scholar 

  46. Masuno A (2022) J Phys Soc Jpn 91:091003

    Article  Google Scholar 

  47. Okress EC, Wroughton DM, Comenetz G, Brace PH, Kelly JCR (1952) J Appl Phys 23:545

    Article  Google Scholar 

  48. Trinh EH (1985) Rev Sci Instrum 56:2059

    Article  CAS  Google Scholar 

  49. Rhim W, Chung SK, Barber D, Man KF, Gutt G, Rulison A, Spjut RE (1993) Rev Sci Instrum 64:2961

    Article  CAS  Google Scholar 

  50. Weber JKR, Hampton DS, Merkley DR, Rey CA, Zatarski MM, Nordine PC (1994) Rev Sci Instrum 65:456

    Article  CAS  Google Scholar 

  51. Kitamura N, Makihara M, Hamai M, Sato T, Mogi I, Awaji S, Watanabe K, Motokawa M (2000) Jpn J Appl Phys 39:L324

    Article  CAS  Google Scholar 

  52. Weber JKR, Rey CA, Neuefeind J, Benmore CJ (2009) Rev Sci Instrum 80:083904

    Article  CAS  Google Scholar 

  53. Fukushima J, Ara K, Hayashi Y, Takizawa H (2018) Mater Lett 216:42

    Article  CAS  Google Scholar 

  54. Kohara S, Akola J, Patrikeev L, Ropo M, Ohara K, Itou M, Fujiwara A, Yahiro J, Okada JT, Ishikawa T, Mizuno A, Masuno A, Watanabe Y, Usuki T (2014) Nat Commun 5:5892

    Article  CAS  Google Scholar 

  55. Krishnan S, Felten JJ, Rix JE, Weber JKR, Nordine PC, Beno MA, Ansell S, Price DL (1997) Rev Sci Instrum 68:3512

    Article  CAS  Google Scholar 

  56. Mei Q, Benmore CJ, Weber JKR (2007) Phys Rev Lett 98:057802

    Article  CAS  Google Scholar 

  57. McMillan PF (2008) Nat Mater 7:843

    Article  CAS  Google Scholar 

  58. Hennet L, Cristiglio V, Kozaily J, Pozdnyakova I, Fischer HE, Bytchkov A, Drewitt JWE, Leydier M, Thiaudière D, Gruner S, Brassamin S, Zanghi D, Cuello GJ, Koza M, Magazù S, Greaves GN, Price DL (2011) Eur Phys J Spec Top 196:151

    Article  Google Scholar 

  59. Skinner LB, Barnes AC, Salmon PS, Hennet L, Fischer HE, Benmore CJ, Kohara S, Weber JKR, Bytchkov A, Wilding MC, Parise JB, Farmer TO, Pozdnyakova I, Tumber SK, Ohara K (2013) Phys Rev B 87:024201

    Article  Google Scholar 

  60. Skinner LB, Benmore CJ, Weber JKR, Du J, Neuefeind J, Tumber SK, Parise JB (2014) Phys Rev Lett 112:157801

    Article  CAS  Google Scholar 

  61. Alderman OLG, Liška M, Macháček J, Benmore CJ, Lin A, Tamalonis A, Weber JKR (2016) J Phys Chem C 120:553

    Article  CAS  Google Scholar 

  62. Alderman OLG, Wilding MC, Tamalonis A, Sendelbach S, Heald SM, Benmore CJ, Johnson CE, Johnson JA, Hah H-Y, Weber JKR (2017) Chem Geol 453:169

    Article  CAS  Google Scholar 

  63. Simon P, Moulin B, Buixaderas E, Raimboux N, Herault E, Chazallon B, Cattey H, Magneron N, Oswalt J, Hocrelle D (2003) J Raman Spectrosc 34:497

    Article  CAS  Google Scholar 

  64. Coté B, Massiot D, Taulelle F, Coutures J-P (1992) Chem Geol 96:367

    Article  Google Scholar 

  65. Massiot D, Trumeau D, Touzo B, Farnan I, Rifflet J-C, Douy A, Coutures J-P (1995) J Phys Chem 99:16455

    Article  CAS  Google Scholar 

  66. Koyama C, Tahara S, Kohara S, Onodera Y, Småbråten DR, Selbach SM, Akola J, Ishikawa T, Masuno A, Mizuno A, Okada JT, Watanabe Y, Nakata Y, Ohara K, Tamaru H, Oda H, Obayashi I, Hiraoka Y, Sakata O (2020) NPG Asia Mater 12:43

    Article  CAS  Google Scholar 

  67. Skinner LB, Benmore CJ, Weber JKR, Williamson MA, Tamalonis A, Hebden A, Wiencek T, Alderman OLG, Guthrie M, Leibowitz L, Parise JB (2014) Science 346:984

    Article  CAS  Google Scholar 

  68. Kohara S, Ohara K, Tajiri H, Song C, Sakata O, Usuki T, Benino Y, Mizuno A, Masuno A, Okada JT, Ishikawa T, Hosokawa S (2016) Z Phys Chem 230:339

    Article  CAS  Google Scholar 

  69. Benmore CJ, Weber JKR (2017) Adv Phys X 2:717

    CAS  Google Scholar 

  70. Alderman OLG, Benmore CJ, Weber JKR, Skinner LB, Tamalonis AJ, Sendelbach S, Hebden A, Williamson MA (2018) Sci Rep 8:2434

    Article  CAS  Google Scholar 

  71. Yu J, Arai Y, Masaki T, Ishikawa T, Yoda S, Kohara S, Taniguchi H, Itoh M, Kuroiwa Y (2006) Chem Mater 18:2169

    Article  CAS  Google Scholar 

  72. Masuno A, Kikuchi Y, Inoue H, Yu J, Arai Y (2011) Appl Phys Express 4:042601

    Article  Google Scholar 

  73. Masuno A, Inoue H, Yu J, Arai Y (2010) J Appl Phys 108:063520

    Article  Google Scholar 

  74. Arai Y, Itoh K, Kohara S, Yu J (2008) J Appl Phys 103:094905

    Article  Google Scholar 

  75. Kaneko M, Yu J, Masuno A, Inoue H, Vijaya Kumar MS, Odawara O, Yoda S (2012) J Am Ceram Soc 95:79

    Google Scholar 

  76. Inoue H, Watanabe Y, Masuno A, Kaneko M, Yu J (2011) Opt Mater 33:1853

    Article  CAS  Google Scholar 

  77. Masuno A, Inoue H, Arai Y, Yu J, Watanabe Y (2011) J Mater Chem 21:17441

    Article  CAS  Google Scholar 

  78. Masuno A, Inoue H (2010) Appl Phys Express 3:102601

    Article  Google Scholar 

  79. Masuno A, Kohara S, Hannon AC, Bychkov E, Inoue H (2013) Chem Mater 25:3056

    Article  CAS  Google Scholar 

  80. Masuno A, Inoue H, Yoshimoto K, Watanabe Y (2014) Opt Mater Express 4:710

    Article  CAS  Google Scholar 

  81. Yoshimoto K, Masuno A, Inoue H, Watanabe Y (2015) J Am Ceram Soc 98:402

    Article  CAS  Google Scholar 

  82. Yoshimoto K, Masuno A, Inoue H, Watanabe Y (2012) J Am Ceram Soc 95:3501

    Article  CAS  Google Scholar 

  83. HOYA GROUP Optics Division, http://www.hoya-opticalworld.com/english/index.html

  84. Inoue H, Masuno A, Endo M, Eguchi S, Japanese Patent, P2014–196236A

    Google Scholar 

  85. Inoue H, Masuno A, Endo M, Eguchi S, Japanese Patent, P2018–135252A

    Google Scholar 

  86. Inoue H, Masuno A, Yoshimoto K, Ueda M, Yamamoto H, Kawashima T. Japanese Patent, WO2018/037797

    Google Scholar 

  87. Dimitrov V, Komatsu T (1999) J Non-Cryst Solids 249:160

    Article  CAS  Google Scholar 

  88. Dimitrov V, Komatsu T (2000) J Ceram Soc Jpn 108:330

    Article  CAS  Google Scholar 

  89. Dimitrov V, Komatsu T (2005) J Solid State Chem 178:831

    Article  CAS  Google Scholar 

  90. Yu J, Kohara S, Itoh K, Nozawa S, Miyoshi S, Arai Y, Masuno A, Taniguchi H, Itoh M, Takata M, Fukunaga T, Koshihara S, Kuroiwa Y, Yoda S (2009) Chem Mater 21:259

    Article  CAS  Google Scholar 

  91. Yoshimoto K, Masuno A, Ueda M, Inoue H, Yamamoto H, Kawashima T (2017) Sci Rep 7:45600

    Article  CAS  Google Scholar 

  92. Yoshimoto K, Masuno A, Sato I, Ezura Y, Inoue H, Ueda M, Mizuguchi M, Yanaba Y, Kawashima T, Oya T, Onodera Y, Kohara S, Ohara K (2020) J Phys Chem B 124:5056

    Article  CAS  Google Scholar 

  93. Makishima A, Mackenzie JD (1973) J Non-Cryst Solids 12:35

    Article  CAS  Google Scholar 

  94. Makishima A, Mackenzie JD (1975) J Non-Cryst Solids 17:147

    Article  CAS  Google Scholar 

  95. Rosales-Sosa GA, Masuno A, Higo Y, Inoue H, Yanaba Y, Mizoguchi T, Umada T, Okamura K, Kato K, Watanabe Y (2015) Sci Rep 5:15233

    Article  CAS  Google Scholar 

  96. Rosales-Sosa GA, Masuno A, Higo Y, Inoue H (2016) Sci Rep 6:23620

    Article  CAS  Google Scholar 

  97. Rosales-Sosa GA, Masuno A, Higo Y, Watanabe Y, Inoue H (2018) J Am Ceram Soc 101:5030

    Article  CAS  Google Scholar 

  98. Guo Y, Li J, Zhang Y, Feng S, Sun H (2021) iScience 24:102735

    Article  CAS  Google Scholar 

  99. Eguchi T, Inoue H, Masuno A, Kita K, Utsuno F (2010) Inorg Chem 49:8298

    Article  CAS  Google Scholar 

  100. Masuno A, Iwata T, Yanaba Y, Sasaki S, Inoue H, Watanabe Y (2019) Dalton Trans 48:10804

    Article  CAS  Google Scholar 

  101. Sasaki S, Masuno A, Ohara K, Yanaba Y, Inoue H, Watanabe Y, Kohara S (2020) Inorg Chem 59:13942

    Article  CAS  Google Scholar 

  102. Sasaki S, Masuno A (2022) J Ceram Soc Jpn 130:60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by JSPS KEKENHI (Grant No. 21K18800, 21H01835, 21K19016, 20H05880 and 20H02429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsunobu Masuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Materials Research Society, under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masuno, A., Ono, M. (2024). Glasses with Hyperordered Structures. In: Hayashi, K. (eds) Hyperordered Structures in Materials. The Materials Research Society Series. Springer, Singapore. https://doi.org/10.1007/978-981-99-5235-9_15

Download citation

Publish with us

Policies and ethics