Skip to main content

Metabolomics and Genetics of Rare Endocrine Disease: Adrenal, Parathyroid Glands, and Cystic Fibrosis

  • Chapter
  • First Online:
Clinical Metabolomics Applications in Genetic Diseases

Abstract

Recent advances in metabolomic technologies and methodologies have identified significant metabolites related to rare endocrine disease conditions of the adrenal gland (hyperaldosteronism, primary adrenal insufficiency), parathyroid (hypoparathyroidism), and cystic fibrosis. Metabolomic profiling combined with genomics is increasingly being employed for improving understanding, clinical diagnosis, and management of these clinically challenging conditions. Advances in gas and liquid chromatography combined with tandem mass spectrometry (GC/LC–MS/MS) techniques have improved the profiling of steroid metabolites. Significant alterations in levels of these metabolites demonstrate the potential to serve as specific markers of disease, help in their stratification, and contribute toward moving to personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ATP1A1:

ATPase Na+/K + -transporting subunit alpha 1

ATP2B3:

ATPase plasma membrane Ca2+ transporting 3

CACNA1H:

Calcium voltage-gated channel subunit alpha 1 H

CACNA1H:

Calcium voltage-gated channel subunit alpha 1 H

CASR:

G protein-coupled calcium-sensing receptor

CCND1/PRAD1:

Cyclin D1

CDKN1C:

Cyclin-dependent kinase inhibitor 1C

CFTR:

CF transmembrane conductance regulator

CHD7:

Chromodomain helicase DNA binding protein 7

CLCN2:

Chloride voltage-gated channel 2

CSDE1:

Cold shock domain-containing E1

CTNNB1:

Catenin beta 1

CYP11B2:

Cytochrome P450 family 11 subfamily B member 2

DAX-1 (NR0B1) SF-1:

Nuclear receptor subfamily 0 group B member 1

DLST:

Dihydrolipoamide S-succinyltransferase

FH:

Fumarate hydratase

GATA3:

GATA binding protein 3

GCM2:

Glial cells missing transcription factor 2

GNA11:

G protein subunit alpha 11

H3F3A:

H3.3 histone A

HIF2A:

Hypoxia-inducible factor 1 subunit alpha

HRAS:

HRas proto-oncogene, GTPase

IDH:

Isocitrate dehydrogenase (NADP(+)) 1

IRP1:

Iron regulatory protein

KCNJ5:

Potassium inwardly rectifying channel subfamily J member 5

MAML3:

Mastermind-like transcriptional coactivator 3

MDH2:

Malate dehydrogenase 2

NF1:

Neurofibromin 1

NR5A1:

Nuclear receptor subfamily 5 group A member 1

P450scc/CYP11A1:

Cytochrome P450 family 11 subfamily A member 1

PHD1:

Prolyl hydroxylase 1

POLE1:

DNA polymerase epsilon, catalytic subunit

PTH:

Parathyroid hormone

RET:

Ret proto-oncogene

SAMD9:

Sterile alpha motif domain containing 9

SDHx:

Succinate dehydrogenase complex iron-sulfur subunit B

SEMA3E:

Semaphorin 3E

SGPL1:

Sphingosine-1-phosphate lyase 1

SLC25A11d:

Solute carrier family 25 member 13

SOX3:

SRY-Box transcription factor 3

TMEM127:

Transmembrane protein 127

VHL/EPAS:

Von Hippel–Lindau tumor suppressor

References

  1. Nieman LK, Ilias I. Evaluation and treatment of Cushing’s syndrome. Am J Med. 2005;118(12):1340–6.

    Article  PubMed  Google Scholar 

  2. Mourtzi N, et al. Unravelling the genetic basis of primary aldosteronism. Nutrients. 2021;13(3):875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Young WF Jr. Diagnosis and treatment of primary aldosteronism: practical clinical perspectives. J Intern Med. 2019;285(2):126–48.

    Article  PubMed  Google Scholar 

  4. Monticone S, et al. GENETICS IN ENDOCRINOLOGY: the expanding genetic horizon of primary aldosteronism. Eur J Endocrinol. 2018;178(3):R101–11.

    Article  CAS  PubMed  Google Scholar 

  5. Azizan EA, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet. 2013;45(9):1055–60.

    Article  CAS  PubMed  Google Scholar 

  6. Seidel E, Schewe J, Scholl UI. Genetic causes of primary aldosteronism. Exp Mol Med. 2019;51(11):1–12.

    Article  CAS  PubMed  Google Scholar 

  7. Funder JW, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(5):1889–916.

    Article  CAS  PubMed  Google Scholar 

  8. Storbeck KH, et al. Steroid metabolome analysis in disorders of adrenal steroid biosynthesis and metabolism. Endocr Rev. 2019;40(6):1605–25.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tokarz J, et al. Endocrinology meets metabolomics: achievements, pitfalls, and challenges. Trends Endocrinol Metab. 2017;28(10):705–21.

    Article  CAS  PubMed  Google Scholar 

  10. Hundemer GL, et al. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 2018;6(1):51–9.

    Article  PubMed  Google Scholar 

  11. Hundemer GL, et al. Renal outcomes in medically and surgically treated primary aldosteronism. Hypertension. 2018;72(3):658–66.

    Article  CAS  PubMed  Google Scholar 

  12. Spyroglou A, et al. Transcriptomics, epigenetics, and metabolomics of primary aldosteronism. Cancers (Basel). 2021;13(21):5582.

    Article  CAS  PubMed  Google Scholar 

  13. Eisenhofer G, et al. Mass spectrometry-based adrenal and peripheral venous steroid profiling for subtyping primary aldosteronism. Clin Chem. 2016;62(3):514–24.

    Article  PubMed  Google Scholar 

  14. Murakami M, et al. In situ metabolomics of aldosterone-producing adenomas. JCI Insight. 2019;4(17):e130356.

    Article  PubMed  PubMed Central  Google Scholar 

  15. De Sousa K, et al. Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma. Hypertension. 2020;75(4):1034–44.

    Article  PubMed  Google Scholar 

  16. van der Heijden C, et al. Vasculometabolic and inflammatory effects of aldosterone in obesity. J Clin Endocrinol Metab. 2020;105(8):2719.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Papathomas TG, Nose V. New and emerging biomarkers in endocrine pathology. Adv Anat Pathol. 2019;26(3):198–209.

    Article  CAS  PubMed  Google Scholar 

  18. Ulick S, Chu MD. Hypersecretion of a new corticosteroid, 18-hydroxycortisol in two types of adrenocortical hypertension. Clin Exp Hypertens A. 1982;4(9–10):1771–7.

    CAS  PubMed  Google Scholar 

  19. Nakamura Y, et al. 18-oxocortisol measurement in adrenal vein sampling as a biomarker for subclassifying primary aldosteronism. J Clin Endocrinol Metab. 2011;96(8):E1272–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mulatero P, et al. 18-hydroxycorticosterone, 18-hydroxycortisol, and 18-oxocortisol in the diagnosis of primary aldosteronism and its subtypes. J Clin Endocrinol Metab. 2012;97(3):881–9.

    Article  CAS  PubMed  Google Scholar 

  21. Williams TA, et al. Genotype-specific steroid profiles associated with aldosterone-producing adenomas. Hypertension. 2016;67(1):139–45.

    Article  CAS  PubMed  Google Scholar 

  22. Fluck CE. MECHANISMS IN ENDOCRINOLOGY: update on pathogenesis of primary adrenal insufficiency: beyond steroid enzyme deficiency and autoimmune adrenal destruction. Eur J Endocrinol. 2017;177(3):R99–R111.

    Article  CAS  PubMed  Google Scholar 

  23. Nowotny H, et al. Therapy options for adrenal insufficiency and recommendations for the management of adrenal crisis. Endocrine. 2021;71(3):586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Espiard S, et al. Improved urinary cortisol metabolome in addison disease: a prospective trial of dual-release hydrocortisone. J Clin Endocrinol Metab. 2021;106(3):814–25.

    Article  PubMed  Google Scholar 

  25. Chantzichristos D, et al. Identification of human glucocorticoid response markers using integrated multi-omic analysis from a randomized crossover trial. elife. 2021;10:10.

    Article  Google Scholar 

  26. Sorgdrager FJH, et al. Hydrocortisone affects fatigue and physical functioning through metabolism of tryptophan: a randomized controlled trial. J Clin Endocrinol Metab. 2018;103(9):3411–9.

    Article  PubMed  Google Scholar 

  27. Hescot S, et al. Prognosis of malignant pheochromocytoma and paraganglioma (MAPP-Prono study): a European network for the study of adrenal tumors retrospective study. J Clin Endocrinol Metab. 2019;104(6):2367–74.

    Article  PubMed  Google Scholar 

  28. Darr R, et al. Pheochromocytoma—update on disease management. Ther Adv Endocrinol Metab. 2012;3(1):11–26.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Erlic Z, et al. Metabolic impact of pheochromocytoma/paraganglioma: targeted metabolomics in patients before and after tumor removal. Eur J Endocrinol. 2019;181(6):647–57.

    Article  CAS  PubMed  Google Scholar 

  30. Neumann HPH, Young WF Jr, Eng C. Pheochromocytoma and paraganglioma. N Engl J Med. 2019;381(6):552–65.

    Article  CAS  PubMed  Google Scholar 

  31. Fishbein L, et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell. 2017;31(2):181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eijkelenkamp K, et al. Clinical implications of the oncometabolite succinate in SDHx-mutation carriers. Clin Genet. 2020;97(1):39–53.

    Article  CAS  PubMed  Google Scholar 

  33. Mercado-Asis LB, et al. Pheochromocytoma: a genetic and diagnostic update. Endocr Pract. 2018;24(1):78–90.

    Article  PubMed  Google Scholar 

  34. Lenders JW, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915–42.

    Article  CAS  PubMed  Google Scholar 

  35. Richter S, et al. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency. J Clin Endocrinol Metab. 2014;99(10):3903–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dwight T, et al. Metabolomics in the diagnosis of pheochromocytoma and paraganglioma. Horm Metab Res. 2019;51(7):443–50.

    Article  CAS  PubMed  Google Scholar 

  37. Richter S, et al. Metabolome-guided genomics to identify pathogenic variants in isocitrate dehydrogenase, fumarate hydratase, and succinate dehydrogenase genes in pheochromocytoma and paraganglioma. Genet Med. 2019;21(3):705–17.

    Article  CAS  PubMed  Google Scholar 

  38. Lendvai N, et al. Succinate-to-fumarate ratio as a new metabolic marker to detect the presence of SDHB/D-related paraganglioma: initial experimental and ex vivo findings. Endocrinology. 2014;155(1):27–32.

    Article  PubMed  Google Scholar 

  39. Chae YC, et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139.

    Article  PubMed  Google Scholar 

  40. Jochmanova I, Pacak K. Pheochromocytoma: the first metabolic endocrine cancer. Clin Cancer Res. 2016;22(20):5001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Cubas AA, et al. DNA methylation profiling in pheochromocytoma and paraganglioma reveals diagnostic and prognostic markers. Clin Cancer Res. 2015;21(13):3020–30.

    Article  PubMed  Google Scholar 

  42. Imperiale A, et al. A new specific succinate-glutamate metabolomic hallmark in SDHx-related paragangliomas. PLoS One. 2013;8(11):e80539.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li D, et al. Heterozygous mutations in TBX1 as a cause of isolated hypoparathyroidism. J Clin Endocrinol Metab. 2018;103(11):4023–32.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gordon RJ, Levine MA. Genetic disorders of parathyroid development and function. Endocrinol Metab Clin N Am. 2018;47(4):809–23.

    Article  Google Scholar 

  45. Paprocka J, et al. Neurological picture and 1H MRS in 4 children with hypoparathyroidism. Przegl Lek. 2005;62(7):680–4.

    PubMed  Google Scholar 

  46. Liessi N, et al. Proteomics and metabolomics for cystic fibrosis research. Int J Mol Sci. 2020;21(15):5439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muhlebach MS, Sha W. Lessons learned from metabolomics in cystic fibrosis. Mol Cell Pediatr. 2015;2(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Al-Qahtani W, et al. Dried blood spot-based metabolomic profiling in adults with cystic fibrosis. J Proteome Res. 2020;19(6):2346–57.

    Article  CAS  PubMed  Google Scholar 

  49. Wetmore DR, et al. Metabolomic profiling reveals biochemical pathways and biomarkers associated with pathogenesis in cystic fibrosis cells. J Biol Chem. 2010;285(40):30516–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Masood A, et al. Distinctive metabolic profiles between cystic fibrosis mutational subclasses and lung function. Metabolomics. 2021;17(1):4.

    Article  CAS  PubMed  Google Scholar 

  51. Muhlebach MS, et al. Metabonomics reveals altered metabolites related to inflammation and energy utilization at recovery of cystic fibrosis lung exacerbation. Metabol Open. 2019;3:100010.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Alvarez JA, et al. Plasma metabolomics in adults with cystic fibrosis during a pulmonary exacerbation: a pilot randomized study of high-dose vitamin D3 administration. Metabolism. 2017;70:31–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grasemann H, et al. Decreased systemic bioavailability of L-arginine in patients with cystic fibrosis. Respir Res. 2006;7:87.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zardini Buzatto A, et al. Lipidome alterations induced by cystic fibrosis, CFTR mutation, and lung function. J Proteome Res. 2021;20(1):549–64.

    Article  CAS  PubMed  Google Scholar 

  55. Guerrera IC, et al. A novel lipidomic strategy reveals plasma phospholipid signatures associated with respiratory disease severity in cystic fibrosis patients. PLoS One. 2009;4(11):e7735.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ollero M, et al. Plasma lipidomics reveals potential prognostic signatures within a cohort of cystic fibrosis patients. J Lipid Res. 2011;52(5):1011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grothe J, et al. Plasma phosphatidylcholine alterations in cystic fibrosis patients: impaired metabolism and correlation with lung function and inflammation. Cell Physiol Biochem. 2015;35(4):1437–53.

    Article  CAS  PubMed  Google Scholar 

  58. Neerincx AH, et al. Lumacaftor/ivacaftor changes the lung microbiome and metabolome in cystic fibrosis patients. ERJ Open Res. 2021;7(2):00731.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Macedo AN, et al. The sweat metabolome of screen-positive cystic fibrosis infants: revealing mechanisms beyond impaired chloride transport. ACS Cent Sci. 2017;3(8):904–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Esther CR Jr, et al. Metabolomic evaluation of neutrophilic airway inflammation in cystic fibrosis. Chest. 2015;148(2):507–15.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Innis SM, et al. Choline-related supplements improve abnormal plasma methionine-homocysteine metabolites and glutathione status in children with cystic fibrosis. Am J Clin Nutr. 2007;85(3):702–8.

    Article  CAS  PubMed  Google Scholar 

  62. Keller BO, Davidson AG, Innis SM. Phthalate metabolites in urine of CF patients are associated with use of enteric-coated pancreatic enzymes. Environ Toxicol Pharmacol. 2009;27(3):424–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Siaj or Anas M. Abdel Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masood, A., Malkawi, A., Siaj, M., Abdel Rahman, A.M. (2023). Metabolomics and Genetics of Rare Endocrine Disease: Adrenal, Parathyroid Glands, and Cystic Fibrosis. In: Abdel Rahman, A.M. (eds) Clinical Metabolomics Applications in Genetic Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-5162-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5162-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5161-1

  • Online ISBN: 978-981-99-5162-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics