Skip to main content

Binary Neural Architecture Search

  • Chapter
  • First Online:
Neural Networks with Model Compression

Part of the book series: Computational Intelligence Methods and Applications ((CIMA))

  • 214 Accesses

Abstract

Deep convolutional neural networks (DCNNs) have achieved state-of-the-art performance in various computer vision tasks, including image classification, instance segmentation, and object detection. The success of DCNNs is attributed to effective architecture design. Neural architecture search (NAS) is an emerging approach that automates the process of designing neural architectures, replacing manual design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The evolution is based on unsupervised learning.

  2. 2.

    No weight parameters

References

  1. Milad Alizadeh, Javier Fernández-Marqués, Nicholas D Lane, and Yarin Gal. An empirical study of binary neural networks’ optimisation. In Proceedings of the International Conference on Learning Representations, 2018.

    Google Scholar 

  2. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. In Machine learning, 2002.

    Google Scholar 

  3. Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing mutual information across views. In NeurIPS, 2019.

    Google Scholar 

  4. Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

    Google Scholar 

  5. A. Buades, B. Coll, and J. Morel. A non-local algorithm for image denoising. In CVPR, 2005.

    Google Scholar 

  6. Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. Bats: Binary architecture search. In Proc. of ECCV, pages 309–325, 2020.

    Google Scholar 

  7. Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search by network transformation. In AAAI, 2018.

    Google Scholar 

  8. Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level network transformation for efficient architecture search. In International Conference on Machine Learning, pages 678–687. PMLR, 2018.

    Google Scholar 

  9. Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task and hardware. In ICLR, 2019.

    Google Scholar 

  10. Hanlin Chen, Baochang Zhang, Shenjun Xue, Xuan Gong, Hong Liu, Rongrong Ji, and David S. Doermann. Anti-bandit neural architecture search for model defense. ArXiv, abs/2008.00698, 2020.

    Google Scholar 

  11. Hanlin Chen, Li’an Zhuo, Baochang Zhang, Xiawu Zheng, Jianzhuang Liu, Rongrong Ji, David Doermann, and Guodong Guo. Binarized neural architecture search for efficient object recognition. International Journal of Computer Vision, 129(2):501–516, 2021.

    Article  Google Scholar 

  12. Hanlin Chen, Li’an Zhuo, Baochang Zhang, Xiawu Zheng, Jianzhuang Liu, Rongrong Ji, David S. Doermann, and Guodong Guo. Binarized neural architecture search for efficient object recognition. International Journal of Computer Vision, 129:501–516, 2020.

    Article  Google Scholar 

  13. Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review. In Proceedings of the IEEE, 2019.

    Google Scholar 

  14. Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. arXiv:2002.05709, 2020.

    Google Scholar 

  15. Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging the depth gap between search and evaluation. In Proceedings of the IEEE/CVF international conference on computer vision, pages 1294–1303, 2019.

    Google Scholar 

  16. Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging the depth gap between search and evaluation. In Proc. of ICCV, 2019.

    Google Scholar 

  17. Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive learning. arXiv:2003.04297, 2020.

    Google Scholar 

  18. Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Xinyu Xiao, and Jian Sun. Detnas: Backbone search for object detection. In NIPS, pages 6638–6648, 2019.

    Google Scholar 

  19. Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking evaluation fairness of weight sharing neural architecture search. arXiv preprint arXiv:1907.01845, 2019.

    Google Scholar 

  20. Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair darts: Eliminating unfair advantages in differentiable architecture search. In Proc. of ECCV, 2020.

    Google Scholar 

  21. Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activation distribution for training binarized deep networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 11408–11417, 2019.

    Google Scholar 

  22. Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. IJCV, 2010.

    Google Scholar 

  23. Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 2010.

    Google Scholar 

  24. D. Gabor. Electrical engineers part iii: Radio and communication engineering, j. Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering 1945-1948, 1946.

    Google Scholar 

  25. D. Gabor. Theory of communication. part 1: The analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 1946.

    Google Scholar 

  26. Ross Girshick. Fast r-cnn. In ICCV, 2015.

    Google Scholar 

  27. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.

    Google Scholar 

  28. Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár, and Kaiming He. Detectron. https://github.com/facebookresearch/detectron, 2018.

  29. I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. arXiv, 2014.

    Google Scholar 

  30. Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin Cao, Jianzhuang Liu, and David Doermann. Projection convolutional neural networks for 1-bit cnns via discrete back propagation. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

    Google Scholar 

  31. Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant mapping. In CVPR, 2006.

    Google Scholar 

  32. Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural network. In NIPS, pages 1135–1143, 2015.

    Google Scholar 

  33. Yiwen Han, Xiaofei Wang, Victor Leung, Dusit Niyato, Xueqiang Yan, and Xu Chen. Convergence of edge computing and deep learning: A comprehensive survey. In arXiv, 2019.

    Google Scholar 

  34. Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In CVPR, 2020.

    Google Scholar 

  35. Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.

    Google Scholar 

  36. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

    Google Scholar 

  37. Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord. Data-efficient image recognition with contrastive predictive coding. arXiv:1905.09272, 2019.

    Google Scholar 

  38. Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. Computer Science, 14(7):38–39, 2015.

    Google Scholar 

  39. R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation and maximization. In ICLR, 2019.

    Google Scholar 

  40. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

    Google Scholar 

  41. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

    Google Scholar 

  42. Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural networks. In Advances in neural information processing systems, pages 4107–4115, 2016.

    Google Scholar 

  43. Dahyun Kim, Kunal Pratap Singh, and Jonghyun Choi. Learning architectures for binary networks. In Proc. of ECCV, pages 575–591, 2020.

    Google Scholar 

  44. Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

    Google Scholar 

  45. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS), pages 1097–1105, 2012.

    Google Scholar 

  46. En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai: On-demand accelerating deep neural network inference via edge computing. In IEEE Transactions on Wireless Communications, 2019.

    Google Scholar 

  47. Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Muller, Ali Thabet, and Bernard Ghanem. Sgas: Sequential greedy architecture search. In Proc. of CVPR, 2020.

    Google Scholar 

  48. Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui Fan. Fully quantized network for object detection. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

    Google Scholar 

  49. Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen Zhuang, and Zhenguo Li. DARTS+: improved differentiable architecture search with early stopping. arXiv, 2019.

    Google Scholar 

  50. Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2117–2125, 2017.

    Google Scholar 

  51. Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision, pages 2980–2988, 2017.

    Google Scholar 

  52. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

    Google Scholar 

  53. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European Conference on Computer Vision (ECCV), pages 740–755, 2014.

    Google Scholar 

  54. Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan Yuille, and Saining Xie. Are labels necessary for neural architecture search? arXiv:2003.12056, 2020.

    Google Scholar 

  55. Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings of the European Conference on Computer Vision, pages 19–34, 2018.

    Google Scholar 

  56. H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. In ICLR, 2019.

    Google Scholar 

  57. Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net: Enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm. In Proceedings of the European conference on computer vision (ECCV), pages 722–737, 2018.

    Google Scholar 

  58. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant to adversarial attacks. In ICLR, 2017.

    Google Scholar 

  59. Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief. Mobile edge computing: Survey and research outlook. In arXiv, 2017.

    Google Scholar 

  60. Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. arXiv:1807.03748, 2018.

    Google Scholar 

  61. Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University of Denmark, 7(15):510, 2008.

    Google Scholar 

  62. Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture search via parameter sharing. In ICML, 2018.

    Google Scholar 

  63. Hai Phan, Zechun Liu, Dang Huynh, Marios Savvides, Kwang-Ting Cheng, and Zhiqiang Shen. Binarizing mobilenet via evolution-based searching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13420–13429, 2020.

    Google Scholar 

  64. Juan C. Pérez, Motasem Alfarra, Guillaume Jeanneret, Adel Bibi, Ali Kassem Thabet, Bernard Ghanem, and Pablo Arbeláez. Robust gabor networks. arXiv, 2019.

    Google Scholar 

  65. Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification using binary convolutional neural networks. In European Conference on Computer Vision, pages 525–542. Springer, 2016.

    Google Scholar 

  66. Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier architecture search. In AAAI, 2019.

    Google Scholar 

  67. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NeurIPS, 2015.

    Google Scholar 

  68. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.

    Google Scholar 

  69. Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

    Google Scholar 

  70. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

    Google Scholar 

  71. Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network with high accuracy? In Thirty-First AAAI conference on artificial intelligence, 2017.

    Google Scholar 

  72. Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In NIPS, 2017.

    Google Scholar 

  73. Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv:1906.05849, 2019.

    Google Scholar 

  74. Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In ICLR, 2020.

    Google Scholar 

  75. Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and Heng Tao Shen. Tbn: Convolutional neural network with ternary inputs and binary weights. In Proceedings of the European Conference on Computer Vision (ECCV), pages 315–332, 2018.

    Google Scholar 

  76. Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos. In CVPR, 2015.

    Google Scholar 

  77. Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training. In ICLR, 2020.

    Google Scholar 

  78. Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers in deep neural networks. In Proceedings of the International Conference on Learning Representationss, pages 1–14, 2018.

    Google Scholar 

  79. Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https://github.com/facebookresearch/detectron2, 2019.

  80. Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-parametric instance discrimination. In CVPR, 2018.

    Google Scholar 

  81. C. Xie, Y. Wu, L. V. D. Maaten, A. L. Yuille, and K. He. Feature denoising for improving adversarial robustness. In CVPR, 2019.

    Google Scholar 

  82. Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel connections for memory-efficient architecture search. arXiv preprint arXiv:1907.05737, 2019.

    Google Scholar 

  83. Shenjun Xue, Hanlin Chen, Chunyu Xie, Baochang Zhang, Xuan Gong, and David S. Doermann. Fast and unsupervised neural architecture evolution for visual representation learning. IEEE Computational Intelligence Magazine, 16:22–32, 2021.

    Article  Google Scholar 

  84. Shenjun Xue, Runqi Wang, Baochang Zhang, Tian Wang, Guodong Guo, and David S. Doermann. Idarts: Interactive differentiable architecture search. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 1143–1152, 2021.

    Google Scholar 

  85. C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hutter. Nas-bench-101: Towards reproducible neural architecture search. In ICML, 2019.

    Google Scholar 

  86. Hongyuan Yu and Houwen Peng. Cyclic differentiable architecture search. arXiv, 2020.

    Google Scholar 

  87. Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks. arXiv:2004.08955, 2020.

    Google Scholar 

  88. Junhe Zhao, Sheng Xu, Baochang Zhang, Jiaxin Gu, David Doermann, and Guodong Guo. Towards compact 1-bit cnns via bayesian learning. International Journal of Computer Vision, pages 1–25, 2022.

    Google Scholar 

  89. Xiawu Zheng, Rongrong Ji, Lang Tang, Yan Wan, Baochang Zhang, Yongjian Wu, Yunsheng Wu, and Ling Shao. Dynamic distribution pruning for efficient network architecture search. arXiv preprint arXiv:1905.13543, 2019.

    Google Scholar 

  90. Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang, Jianzhuang Liu, and Qi Tian. Multinomial distribution learning for effective neural architecture search. In CVPR, 2019.

    Google Scholar 

  91. Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang, Jianzhuang Liu, and Qi Tian. Multinomial distribution learning for effective neural architecture search. In ICCV, October 2019.

    Google Scholar 

  92. Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards effective low-bitwidth convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7920–7928, 2018.

    Google Scholar 

  93. Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsupervised learning of visual embeddings. In ICCV, 2019.

    Google Scholar 

  94. B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable image recognition. In CVPR, 2018.

    Google Scholar 

  95. Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In International Conference on Learning Representations (ICLR), pages 1–16, 2017.

    Google Scholar 

  96. Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8697–8710, 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, B., Wang, T., Xu, S., Doermann, D. (2024). Binary Neural Architecture Search. In: Neural Networks with Model Compression. Computational Intelligence Methods and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-5068-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5068-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5067-6

  • Online ISBN: 978-981-99-5068-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics