Skip to main content

Unraveling the Mysteries of Mycorrhiza-Plant Interactions: Mechanisms of Protection and Ecological Factors Influencing Symbioses

  • Chapter
  • First Online:
Mycorrhizal Symbiosis and Agroecosystem Restoration

Abstract

Mycorrhizal fungi are root symbionts that embrace many benefits to the associated plant host. Protecting plants from devastating plant pathogens and pests like fungi, bacteria, and nematodes is among the numerous significant attributes besides plant health and yield ameliorations. The protection that mycorrhiza holds for their hosts extended to cover a large number of economic crops worldwide that possess the possibility of using it as a potential bio-protector. However, in order to maximize the efficacy of mycorrhizal application, the mechanism implicated behind protection and factors that affect mycorrhizal symbioses should be well examined. Several mechanisms and factors have been proposed to explain this protective relationship. Most of them are either conditional or case specific. Most plants rely on several mechanisms at the same time. In this chapter, we go over the main mechanisms reported to involve in mycorrhizal host protection against fungal, bacterial, and nematode diseases. Spotting the light on the main ecological factors that affect the outcome of mycorrhiza interaction with hosts has also been taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelrazek S, Choudhari S, Thimmapuram J, Simon P, Colley M, Mengiste T, Hoagland L (2020a) Changes in the core endophytic mycobiome of carrot taproots in response to crop management and genotype. Sci Rep 10:1–14

    Article  Google Scholar 

  • Abdelrazek S, Simon P, Colley M, Mengiste T, Hoagland L (2020b) Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PLoS One 15:e0233783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abo-Elyousr KAM, Seleim MAA, Abd-El-Moneem KMH, Saead FA (2014) Integrated effect of Glomus mosseae and selected plant oils on the control of bacterial wilt disease of tomato. Crop Prot 66:67–71

    Article  Google Scholar 

  • Adie B, Chico JM, Rubio-Somoza I, Solano R (2007) Modulation of plant defenses by ethylene. J Plant Growth Regul 26:160–177

    Article  CAS  Google Scholar 

  • Aguk J, Karanja N, Schulte-Geldermann E, Bruns C, Kinyua Z, Parker M (2018) Control of bacterial wilt (Ralstonia solanacearum) in potato (Solanum tuberosum) using rhizobacteria and arbuscular mycorrhiza fungi. Afr J Food Agric Nutr Dev 18:13371–13387

    CAS  Google Scholar 

  • Agoncillo (2018) Control of bacterial wilt disease caused by Ralstonia solanacearum in pepper using arbuscular mychorrhizal fungi (Mykovam). J Nat Sci Res 8:62–66

    Google Scholar 

  • Ahanger MA, Hashem A, Abd-Allah EF, Ahmad P (2014a) Arbuscular mycorrhiza in crop improvement under environmental stress. In: Emerging technologies and management of crop stress tolerance. Elsevier, San Diego, CA, pp 69–95

    Chapter  Google Scholar 

  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014b) Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment, vol 1. Springer, New York, NY, pp 25–55

    Chapter  Google Scholar 

  • Ahmed MS, Sallam NMA, Mohamed AEA, Hassan MHA (2013) Effect of mycorrhiza and biofertilizers on reducing the incidence of Fusarium root and pod rot diseases of peanut. Arch Phytopathol Plant Prot 46(7):868–881

    Article  CAS  Google Scholar 

  • Al-Askar A, Rashad Y (2010) Arbuscular mycorrhizal fungi: a biocontrol agent against common. Plant Pathol J 9:31–38

    Article  Google Scholar 

  • Al-Hmoud G, Al-Momany A (2017) Effect of four mycorrhizal products on squash plant growth and its effect on physiological plant elements. Adv Crop Sci Tech 5:260

    Google Scholar 

  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    Article  PubMed  Google Scholar 

  • Amiri R, Nikbakht A, Rahimmalek M, Hosseini H (2017a) Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions. J Plant Growth Regul 36:502–515

    Article  CAS  Google Scholar 

  • Amiri R, Ali N, Nematollah E, Mohammad RS (2017b) Nutritional status, essential oil changes and water-use efficiency of rose geranium in response to arbuscularmycorrhizal fungi and water deficiency stress. Symbiosis 73:15–25

    Article  CAS  Google Scholar 

  • Ansari RA, Mahmood I (2017a) Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeonpea. Sci Hortic 226:1–9

    Article  CAS  Google Scholar 

  • Ansari RA, Mahmood I (2017b) Determination of disease incidence caused by Meloidogyne spp. and or Fusarium udum on pigeonpea in Aligarh district: a survey. Trends Biosci 10(24):5239–5243

    Google Scholar 

  • Ansari RA, Mahmood I (2019a) Plant health under biotic stress. In: Ansari RA, Mahmood I (eds) Microbial interactions, vol II. Springer Nature, Singapore

    Google Scholar 

  • Ansari RA, Mahmood I (2019b) Plant health under biotic stress. In: Ansari RA, Mahmood I (eds) Organic strategies, vol I. Springer Nature, Singapore

    Google Scholar 

  • Ansari RA, Mahmood I, Rizvi R, Sumbul A (2017a) PGPR: current vogue in sustainable crop production. In: Kumar V (ed) Probiotics and plant health. Springer Nature, Singapore, pp 455–472

    Chapter  Google Scholar 

  • Ansari RA, Mahmood I, Rizvi R, Sumbul A, Safiuddin (2017b) Siderophores: augmentation of soil health and crop productivity. In: Kumar V (ed) Probiotics in agroecosystem. Springer Nature, Singapore, pp 291–312

    Chapter  Google Scholar 

  • Ansari RA, Sumbul A, Rizvi R, Mahmood I (2019a) Potential role of plant growth promoting rhizobacteria in alleviation of biotic stress. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress, Microbial interactions, vol II. Springer Nature, Singapore, pp 177–188

    Google Scholar 

  • Ansari RA, Sumbul A, Rizvi R, Mahmood I (2019b) Organic soil amendments: potential tool for soil and plant health management. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress, Organic strategies, vol I. Springer Nature, Singapore, pp 1–35

    Google Scholar 

  • Ansari RA, Rizvi R, Mahmood I (2020a) Management of phytonematodes: management of phytonematodes: recent advances and future challenges. Springer Nature, Singapore

    Book  Google Scholar 

  • Ansari RA, Rizvi R, Sumbul A, Mahmood I (2020b) Plant-growth-promoting Rhizobacteria (PGPR)-based sustainable management of phytoparasitic nematodes: current understandings and future challenges. In: Ansari RA et al (eds) Management of phytonematodes: recent advances and future challenges. Springer Nature, Singapore. https://doi.org/10.1007/978-981-15-4087-5_3

    Chapter  Google Scholar 

  • Aseel DG, Rashad YM, Hammad SM (2019) Arbuscular mycorrhizal fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathways genes in tomato against tomato mosaic virus. Sci Rep 9:1–10

    Article  CAS  Google Scholar 

  • Azcón-Aguilar C, Barea J (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens–an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Azcón-Aguilar C, Jaizme-Vega M, Calvet C (2002) The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. In: Mycorrhizal technology in agriculture. Springer, pp 187–197

    Chapter  Google Scholar 

  • Bagheri V, Shamshiri MH, Shirani H, Roosta H (2012) Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress. J Agric Sci Technol 14:1591–1604

    Google Scholar 

  • Bagy HMK, Hassan EA, Nafady NA, Dawood MF (2019) Efficacy of arbuscular mycorrhizal fungi and endophytic strain Epicoccum nigrum ASU11 as biocontrol agents against blackleg disease of potato caused by bacterial strain Pectobacterium carotovora subsp. atrosepticum PHY7. Biol Control 134:103–113

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Balaji V, Mayrose M, Sherf O, Jacob-Hirsch J, Eichenlaub R, Iraki N, Manulis-Sasson S, Rechavi G, Barash I, Sessa G (2008) Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol 146:1797–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates TR, Lynch JP (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250. https://doi.org/10.1023/A:1012791706800

    Article  CAS  Google Scholar 

  • Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 7:4686

    Article  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, Fortin JA, Hamel C, St-Arnaud M, Shatilla A (1994) Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp. chrysanthemi. Phytopathology 84:958–968

    Article  CAS  Google Scholar 

  • Berg G, Grosch R, Scherwinski K (2007) Risk assessment for microbial antagonists: Are there effects on non-target organisms? GesundePflanzen 59:107–117

    CAS  Google Scholar 

  • Bever JD (2002) Negative feedback within a mutualism: host–specific growth of mycorrhizal fungi reduces plant benefit. Proc R Soc Lond B Biol Sci 269:2595–2601

    Article  Google Scholar 

  • Bødker L, Kjøller R, Kristensen K, Rosendahl S (2002) Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12:7–12

    Article  PubMed  Google Scholar 

  • Bonfante P, Perotto S (1995) Tansley review no. 82. strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3–21

    Article  Google Scholar 

  • Bowles TM, Barrios-Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE (2016) Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Environ 566:1223–1234

    Article  PubMed  Google Scholar 

  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017

    Article  CAS  PubMed  Google Scholar 

  • Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100:3–16

    Article  Google Scholar 

  • Brito ODC, Hernandes I, Ferreira JCA, Cardoso MR, Alberton O, Dias-Arieira CR (2018) Association between arbuscular mycorrhizal fungi and Pratylenchus brachyurus in maize crop. Chilean J Agric Res 78:521–527

    Article  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhizae interfaces. New Phytol. 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587–612. https://doi.org/10.3390/agronomy5040587

    Article  CAS  Google Scholar 

  • Calvet C, Pinochet J, Hernández-Dorrego A, Estaún V, Camprubí A (2001) Field microplot performance of the peach-almond hybrid GF-677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root-knot nematodes. Mycorrhiza 10:295–300

    Article  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019a) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019b) Corrigendum: root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:420

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen M, Bruisson S, Bapaume L, Darbon G, Glauser G, Schorderet M, Reinhardt D (2021) VAPYRIN attenuates defence by repressing PR gene induction and localized lignin accumulation during arbuscular mycorrhizal symbiosis of Petunia hybrida. New Phytol 229:3481–3496

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z et al (2017) Combined Inoculation with multiple arbuscularmycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol 8:25–16. https://doi.org/10.3389/fmicb.2017.02516

    Article  Google Scholar 

  • Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthoranicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    Article  CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea J-M, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Cotton TA (2018) Arbuscular mycorrhizal fungal communities and global change: an uncertain future. FEMS Microbiol Ecol 94:fiy179

    Article  CAS  Google Scholar 

  • De Andrade SAL, Domingues AP, Mazzafera P (2015) Photosynthesis is induced in rice plants that associate with arbuscularmycorrhizal fungi and are grown under arsenate and arsenite stress. Chemosphere 134:141–149

    Article  PubMed  Google Scholar 

  • de Roman M, Fernandez I, Wyatt T, Sahrawy M, Heil M, Pozo MJ (2011) Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. J Ecol 99:36–45

    Article  Google Scholar 

  • Demir S, Şensoy S, Ocak E, Tüfenkci Ş, Durak ED, Erdinc C, Ünsal H (2015) Effects of arbuscular mycorrhizal fungus, humic acid, and whey on wilt diseasecaused by Verticillium dahliae Kleb. in three solanaceous crops. Turk J Agric For 39:300–309

    Article  CAS  Google Scholar 

  • Dowarah B, Gill SS, Agarwala N (2021) Arbuscular Mycorrhizal Fungi in Conferring Tolerance to Biotic Stresses in Plants. J Plant Growth Regul:1–16

    Google Scholar 

  • Duponnois R, Plenchette C, Thioulouse J, Cadet P (2001) The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal. Appl Soil Ecol 17:239–251

    Article  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • Ferreira BS, Santana MV, Macedo RS, Silva JO, Carneiro MA, Rocha MR (2018) Co-occurrence patterns between plant-parasitic nematodes and arbuscular mycorrhizal fungi are driven by environmental factors. Agric Ecosyst Environ 265:54–61

    Article  Google Scholar 

  • Ferreira ML, Gerbino E, Cavallero GJ, Casabuono AC, Couto AS, Gomez-Zavaglia A, Ramirez SA, Vullo DL (2020) Infrared spectroscopy with multivariate analysis to interrogate the interaction of whole cells and secreted soluble exopolimeric substances of Pseudomonas veronii 2E with Cd (II), Cu (II) and Zn (II). Spectrochim Acta A Mol Biomol Spectrosc 228:117820

    Article  CAS  PubMed  Google Scholar 

  • Ferreira DA, da Silva TF, Pylro VS, Salles JF, Andreote FD, Dini-Andreote F (2021) Soil microbial diversity affects the plant-root colonization by arbuscular mycorrhizal fungi. Microb Ecol 82:100–103

    Article  CAS  PubMed  Google Scholar 

  • Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitter AH (2004) Magnolioid roots–hairs, architecture and mycorrhizal dependency. New Phytol 164:15–16

    Article  PubMed  Google Scholar 

  • Fitter A, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132

    Article  Google Scholar 

  • Francl L (1993) Interactions of nematodes with mycorrhizae and mycorrhizal fungi. In: Khan MW (ed) Nematode interactions. Springer, Dordrecht, pp 203–216

    Chapter  Google Scholar 

  • Frank B (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze

    Google Scholar 

  • Fulekar M, Pathak B (2015) Rhizosphere: an innovative approach for remediation of contaminants. IJSER 6:291–303

    Google Scholar 

  • Garcés-Ruiz M, Senés-Guerrero C, Declerck S, Cranenbrouck S (2017a) Arbuscular mycorrhizal fungal community composition in Carludovica palmata, Costus scaber and Euterpe precatoria from weathered oil ponds in the Ecuadorian Amazon. Front Microbiol 8:2134

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcés-Ruiz M, Calonne-Salmon M, Plouznikoff K, Misson C, Navarrete-Mier M, Cranenbrouck S et al (2017b) Dynamics of short-term phosphorus uptake by intact mycorrhizal and non-mycorrhizal maize plants grown in a circulatory semi-hydroponic cultivation system. Front Plant Sci 8:1471

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  PubMed  Google Scholar 

  • Gernns H, Alten H, Poehling H-M (2001) Arbuscular mycorrhiza increased the activity of a biotrophic leaf pathogen - is a compensation possible. Mycorrhiza 11(5):237–243. https://doi.org/10.1007/s005720100128

    Article  CAS  Google Scholar 

  • Giang BL, Nguyen NH, Dong Yen PN, Minh Hoang VD, Lien Ha BT, Le NTT (2020) Combination of mycorrhizal symbiosis and root grafting effectively controls nematode in replanted coffee soil. Plants 9:555

    Article  PubMed  PubMed Central  Google Scholar 

  • Giannakis N, Sanders FE (1990) Interactions between mycophagous nematodes, mycorrhizal and other soil fungi. Agric Ecosyst Environ 29(1–4):163–167

    Article  Google Scholar 

  • Giovannetti M, Avio L, Sbrana C (2010) Fungal spore germination and pre-symbiotic mycelial growth–physiological and genetic aspects. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 3–32

    Chapter  Google Scholar 

  • Goicoechea N (2020) Mycorrhizal fungi as bioprotectors of crops against verticillium wilt—a hypothetical scenario under changing environmental conditions. Plants 9:1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Bellot MJ, Ortuño MF, Nortes PA, Vicente-Sánchez J, Bañón S, Sánchez Blanco MJ (2015) Mycorrhizal euonymus plants and reclaimed water: biomass, water status and nutritional responses. Sci Hort 186:61–69

    Article  CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending G (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Gough EC, Owen KJ, Zwart RS, Thompson JP (2020) A systematic review of the effects of arbuscular mycorrhizal fungi on root-lesion nematodes, Pratylenchus spp. Front Plant Sci 11:923

    Article  PubMed  PubMed Central  Google Scholar 

  • Grman E, Robinson TM, Klausmeier CA (2012) Ecological specialization and trade affect the outcome of negotiations in mutualism. Am Nat 179:567–581

    Article  PubMed  Google Scholar 

  • Grosch R, Lottmann J, Faltin F, Berg G (2005) Use of bacterial antagonists to control diseases caused by Rhizoctonia solani. Gesunde Pflanzen 57:199–205

    Article  Google Scholar 

  • Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195–205

    Article  CAS  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Hao Z, Xie W, Chen B (2019) Arbuscular mycorrhizal symbiosis affects plant immunity to viral infection and accumulation. Viruses 11:534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hameed A, Dilfuza E, Abd-Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscularmycorrhizal symbiosis in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 139–159

    Chapter  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manage Sci 60:149–157

    Article  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344. https://doi.org/10.1046/j.0028-646X.2001.00312

    Article  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Egamberdieva D (2018a) Arbuscular mycorrhizal fungi and plant stress tolerance. In: Plant microbiome: stress response. Springer, Singapore, pp 81–103

    Chapter  Google Scholar 

  • Haselwandter K, Winkelmann G (2007) Siderophores of symbiotic fungi. In: Chincholkar SB, Varma A (eds) Microbial Siderophore, Soil biology series, vol 12. Springer, Berlin, pp 91–103

    Chapter  Google Scholar 

  • Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani A-BF, Aldehaish HA, Egamberdieva D, Abd Allah EF (2018b) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25:1102–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Haynes R, Swift R (1985) Growth and nutrient uptake by highbush blueberry plants in a peat medium as influenced by pH, applied micronutrients and mycorrhizal inoculation. Sci Hortic 27:285–294

    Article  CAS  Google Scholar 

  • Heinemeyer A, Fitter A (2004) Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. J Exp Bot 55:525–534

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107:13754–13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Storer K (2015) Arbuscularmycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19

    Article  CAS  Google Scholar 

  • Hoeksema JD (2005) Plant–plant interactions vary with different mycorrhizal fungus species. Biol Lett 1:439–442

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Hogan CM (2011) Phosphate. In: Jorgensen A, Cleveland CJ (eds) Encyclopedia of earth. National Council for Science and the Environment, Washington, DC

    Google Scholar 

  • Hol WG, Cook R (2005) An overview of arbuscular mycorrhizal fungi–nematode interactions. Basic Appl Ecol 6:489–503

    Article  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Luo S, Zeng R (2003) Mechanisms of plant disease resistance induced by arbuscular mycorrhizal fungi. Ying Yong Sheng Tai Xue Bao 14:819–822

    PubMed  Google Scholar 

  • Ismail Y, McCormick S, Hijri M (2013) The arbuscular mycorrhizal fungus, Glomus irregulare, controls the mycotoxin production of Fusarium sambucinum in the pathogenesis of potato. FEMS Microbiol Lett 348:46–51

    Article  CAS  PubMed  Google Scholar 

  • Jaiti F, Meddich A, El Hadrami I (2007) Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease. Physiol Mol Plant Pathol 71:166–173

    Article  CAS  Google Scholar 

  • Jaiti F, Kassami M, Meddich A, El Hadrami I (2008) Effect of arbuscular mycorrhization on the accumulation of hydroxycinnamic acid derivatives in date palm seedlings challenged with Fusarium oxysporum f. sp. albedinis. J Phytopathol 156:641

    Article  CAS  Google Scholar 

  • Jamiołkowska A, Księżniak A, Gałązka A, Hetman B, Kopacki M, Skwaryło-Bednarz B (2018) Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a review. Int Agrophys 32:133

    Article  Google Scholar 

  • Jansa J, Bukovská P, Gryndler M (2013) Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts–or just soil free-riders? Front Plant Sci 4:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  CAS  PubMed  Google Scholar 

  • Jiang YN, Wang WX, Xie QJ, Liu N, Liu LX, Wang DP et al (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Graham JH (2013) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363:411–419

    Article  CAS  Google Scholar 

  • Jun-Li H, Xian-Gui L, Jun-Hua W, Wei-Shou S, Shu W, Su-Ping P, Ting-Ting M (2010) Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber Fusarium wilt in greenhouse soils. Pedosphere 20:586–593

    Article  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Kadowaki K, Yamamoto S, Sato H, Tanabe AS, Hidaka A, Toju H (2018) Mycorrhizal fungi mediate the direction and strength of plant–soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Commun Biol 1:1–11

    Article  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103:11086–11091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalil S, Loynachan TE, Tabatabai MA (1994) Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agron J 86:949–958

    Article  Google Scholar 

  • Khatabi B, Schäfer P (2012) Ethylene in mutualistic symbioses. Plant Signal Behav 7:1634–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kilpeläinen J, Aphalo PJ, Barbero-López A, Adamczyk B, Nipu SA, Lehto T (2020) Are arbuscular-mycorrhizal Alnus incana seedlings more resistant to drought than ectomycorrhizal and nonmycorrhizal ones? Tree Physiol 40:782–795

    Article  PubMed  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Konvalinková T, Jansa J (2016) Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Front Plant Sci 7:782

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumaresan G, Jayachitra J, Shanthi R (2020) Inoculation effect of arbuscular mycorrhizal fungi on the growth and yield of cotton. Ann Rom Soc Cell Biol:1180–1188

    Google Scholar 

  • Lehmann A, Rillig MC (2015) Arbuscularmycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops—a meta-analysis. Soil Biol Biochem 81:147–158

    Article  CAS  Google Scholar 

  • Liu C, Ravnskov S, Liu F, Rubæk GH, Andersen MN (2018) Arbuscularmycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. J Agric Sci 156:46–58

    Article  CAS  Google Scholar 

  • Linderman R (1991) Mycorrhizal interactions in the rhizosphere. In: The rhizosphere and plant growth. Springer, Dordrechet, pp 343–348

    Chapter  Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    Article  CAS  Google Scholar 

  • López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludwig-Müller J (2010) Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. In: Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 169–190

    Chapter  Google Scholar 

  • Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A et al (2017) Fatty acids in arbuscularmycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178

    Article  CAS  PubMed  Google Scholar 

  • Marro N, Caccia M, Doucet ME, Cabello M, Becerra A, Lax P (2018) Mycorrhizas reduce tomato root penetration by false root-knot nematode Nacobbus aberrans. Appl Soil Ecol 124:262–265

    Article  Google Scholar 

  • Marschner P, Baumann K (2003) Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant Soil 251:279–289

    Article  CAS  Google Scholar 

  • Mayer Z, Juhász Á, Posta K (2019) Mycorrhizal root exudates induce changes in the growth and fumonisin gene (FUM1) expression of Fusarium proliferatum. Agronomy 9:291

    Article  CAS  Google Scholar 

  • Mensah JA, Koch AM, Antunes PM, Kiers ET, Hart M, Bücking H (2015) High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza 25:533–546

    Article  CAS  PubMed  Google Scholar 

  • Miozzi L, Vaira AM, Catoni M, Fiorilli V, Accotto GP, Lanfranco L (2019) Arbuscular mycorrhizal symbiosis: plant friend or foe in the fight against viruses? Front Microbiol 10:1238

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitra D, Navendra U, Panneerselvam U, Ansuman S, Ganeshamurthy AN, Divya J (2019) Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. Int J Life Sci Appl Sci 1:1–10

    Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina R, Smith JE, Mckay D, Melville L (1997) Biology of the ectomycorrhizal genus, Rhizopogon III. Influence of co-cultured conifer species on mycorrhizal specificity with the arbutoid hosts Arctostaphylos uva-ursi and Arbutus menziesii. New Phytol 137:519–528

    Article  PubMed  Google Scholar 

  • Müller NG, Kleinschmidt A (2003) Dynamic interaction of object-and space-based attention in retinotopic visual areas. J Neurosci 23:9812–9816

    Article  PubMed  PubMed Central  Google Scholar 

  • Nanjundappa A, Bagyaraj DJ, Saxena AK, Kumar M, Chakdar H (2019) Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol Biotechnol 6:1–10

    Article  Google Scholar 

  • Nehls U (2008) Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59:1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Lössl A, Franz C, Novak J, Zitterl-Eglseer K (2010) Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L. Planta Med 76:393–398

    Article  CAS  PubMed  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field, vol 83, no 6, pp 991–1000

    Google Scholar 

  • Nguyen Hong D, Posta K (2018) Inoculation with Septoglomus constrictum improves tolerance to heat shock in tomato plants. Columella J Agric Environ Sci 5:7–14

    Google Scholar 

  • Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK (2013) An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol 15:1870–1881

    Article  CAS  PubMed  Google Scholar 

  • Odelade KA, Babalola OO (2019) Bacteria, fungi and archaea domains in rhizosphericsoil and their effects in enhancing agricultural productivity. Int J Environ Res Public Health 16(3873):1–19

    Google Scholar 

  • Olawuyi O, Odebode A, Olakojo S (2013) Genotype x treatment x concentration interaction and character association of maize (Zea mays L.) under arbuscular mycorrhizal fungi and Striga lutea Lour. In: Proceedings of the 37th annual conference of the Genetics Society of Nigeria, Lafia, Nigeria, pp 210–219

    Google Scholar 

  • Olawuyi O, Odebode A, Oyewole I, Akanmu A, Afolabi O (2014) Effect of arbuscular mycorrhizal fungi on Pythium aphanidermatum causing foot rot disease on pawpaw (Carica papaya L.) seedlings. Arch Phytopathol Plant Prot 47:185–193

    Article  CAS  Google Scholar 

  • Oliver IC, Knox OGG, Flavel RJ, Wilson BR (2021) Rhizosphere legacy: plant root interactions with the soil and its biome. In: Gupta VVSR, Sharma AK (eds) Rhizosphere biology: interactions between microbes and plants. Rhizosphere biology. Springer, Singapore

    Google Scholar 

  • Omacini M, Eggers T, Bonkowski M, Gange A, Jones T (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232

    Article  Google Scholar 

  • Ordoñez YM, Fernandez BR, Lara LS, Rodriguez A, Uribe-Velez D, Sanders IR (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS One 11:e0154438

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortas I (2012) Do maize and pepper plants depend on mycorrhizae in terms of phosphorus and zinc uptake? J Plant Nutr 35:1639–1656

    Article  CAS  Google Scholar 

  • Owusu-Bennoah E, Mosse B (1979) Plant growth responses to vesicular-arbuscular mycorrhiza: XI. Field inoculation responses in barley, lucerne and onion. New Phytol 83:671–679

    Article  Google Scholar 

  • Ozgonen H, Erkilic A (2007) Growth enhancement and Phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Prot 26(11):1682–1688

    Article  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Pile LS, Wang GG, Stovall JP, Siemann E, Wheeler GS, Gabler CA (2017) Mechanisms of Chinese tallow (Triadica sebifera) invasion and their management implications–a review. For Ecol Manag 404:1–13

    Article  Google Scholar 

  • Poveda J (2020) Marchantia polymorpha subsp. ruderalis (Bischl. & Boissel.-Dub.)-arbuscular mycorrhizal fungi interaction: beneficial or harmful? Symbiosis 82:165–174

    Article  CAS  Google Scholar 

  • Poveda J, Abril-Urias P, Escobar C (2020) Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front Microbiol 11:992

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol 220:1059–1075

    Article  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen AL, Busby RR, Hoeksema JD (2018) Host preference of ectomycorrhizal fungi in mixed pine–oak woodlands. Can J For Res 48:153–159

    Article  CAS  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    Article  CAS  PubMed  Google Scholar 

  • Riad SN, El-Zawahry AMI, El Aref HM, Zawam HS (2021) Induction of systemic resistance in tomato by some abiotic compounds against Meloidogyne javanica. Assiut J Agric Sci 52(1):74–89

    Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rini VM (2001) Effect of arbuscularmycorrhiza on oil palm seedling growth and development of basal stem rot disease caused by Ganodermaboninense. Master Thesis, Universiti Putra Malaysia.

    Google Scholar 

  • Rizvi R, Singh G, Safiuddin ARA, Tiyagi SA, Mahmood I (2015) Sustainable management of root-knot disease of tomato by neem cake and Glomus fasciculatum. Cogent Food Agric 1:1008859

    Article  Google Scholar 

  • Rodriguez-Heredia M, Djian-Caporalino C, Ponchet M, Lapeyre L, Canaguier R, Fazari A, Marteau N, Offroy-Chave M (2020) Protective effects of mycorrhizal association in tomato and pepper against Meloidogyne incognita infection, and mycorrhizal networks for early mycorrhization of low mycotrophic plants. Phytopathol Mediterranea 59:377–384

    Google Scholar 

  • Sadhana B (2014) Arbuscular Mycorrhizal Fungi (AMF) as a biofertilizer-a review. Int J Curr Microbiol App Sci 3:384–400

    Google Scholar 

  • Scherlach K, Hertweck C (2018) Mediators of mutualistic microbe–microbe interactions. Nat Prod Rep 35:303–308

    Article  CAS  PubMed  Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Shah A, Smith DL (2020) Flavonoids in agriculture: chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy 10:1209

    Article  CAS  Google Scholar 

  • Sharma M, Saini I, Kaushik P, Al Dawsari MM, Al Balawi T, Alam P (2021) Mycorrhizal fungi and Pseudomonas fluorescens application reduces root-knot nematode (Meloidogyne javanica) infestation in eggplant. Saudi J Biol Sci 28(7):3685–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi G, Liu Y, Johnson NC, Olsson PA, Mao L, Cheng G, Jiang S, An L, Du G, Feng H (2014) Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi. Plant Soil 378:173–188

    Article  CAS  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikes BA (2010) When do arbuscular mycorrhizal fungi protect plant roots frompathogens? Plant Signal Behav 5(6):763–765

    Article  PubMed  PubMed Central  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60

    Article  Google Scholar 

  • Singh R, Adholeya A, Mukerji K (2000) Mycorrhiza in control of soil borne pathogens. In: Mycorrhizal biology. Springer, pp 173–196

    Chapter  Google Scholar 

  • Slezack S, Dumas-Gaudot E, Paynot M, Gianinazzi S (2000) Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches? Mol Plant Microbe Interact 13:238–241

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Nicholas D, Smith F (1979) Effect of early mycorrhizal infection on nodulation and nitrogen fixation in Trifolium subterraneum L. Funct Plant Biol 6:305–316

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic press

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Solanki MK, Kashyap PL, Ansari RA, Kumari B (2020) Microbiomes and plant health: panoply and their applications. Academic Press, London. https://www.elsevier.com/books/microbiomes-and-plant-health/solanki/978-0-12-819715-8

    Google Scholar 

  • Sumbul A, Mahmood I, Rizvi R, Safiuddin, Ansari RA (2017) Mycorrhiza: An alliance for the nutrient management in plants. In: Kumar V (ed) Probiotics in agroecosystem. Springer Nature, Singapore, pp 371–386

    Chapter  Google Scholar 

  • Tahat M, Sijam K, Othman R (2010) Mycorrhizal fungi as a biocontrol agent. Plant Pathol J (Faisalabad) 9:198–207

    Article  Google Scholar 

  • Tahat MM, Abo-Farag K, Alananbeh K, Al-Momany AM (2020) The efficacy of glomus mosseae and olive cake to control a chili pepper (capsicum annuum) damping off disease. Fresen Environ Bull 29:9863–9871

    CAS  Google Scholar 

  • Tahat MM, Al Momany AM (2019) Bio-control characterization of two endo-mycorrhizal fungi against Verticillium wilt of cucumber. Fresen Environ Bull 28:9627–9635

    CAS  Google Scholar 

  • Tahat MM, Sijam K (2012) Mycorrhizal fungi and abiotic environmental conditions relationship. Res J Environ Sci 6:125–133

    Article  CAS  Google Scholar 

  • Tahat MM, Sijam K, Othman R (2012) Ultrastructural changes of tomatoes (Lycopersicon esculentum) root colonized by Glomus mosseae and Ralstonia solanacearum. Afr J Biotechnol 11:6681–6686

    Google Scholar 

  • Tedersoo L, Bahram M, Zobel M (2020) How mycorrhizal associations drive plant population and community biology. Science 367

    Google Scholar 

  • Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, Laliberté E (2017) Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355:173–176

    Article  CAS  PubMed  Google Scholar 

  • Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ (2017) Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J Ecol 105:921–929

    Article  CAS  Google Scholar 

  • Tian L, Zou Y-N, Wu Q-S, Kuča K (2021) Mycorrhiza-induced plant defence responses in trifoliate orange infected by Phytophthora parasitica. Acta Physiologiae Plantarum 43:1–8

    Article  Google Scholar 

  • Trotta A, Vanese GC, Gnavi E, Fascon A, Sampo S, Berta G (1996) Interaction between the soilborne root pathogen PhytophthoranicotianaeVarparasitica and the arbuscularmycorrhizal fungus Glomusmosseae in tomato plant. Plant Soil 185:199–209

    Article  CAS  Google Scholar 

  • Turrini A, Avio L, Giovannetti M, Agnolucci M (2018a) Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: the challenge of translational research. Front Plant Sci 9:1407

    Article  PubMed  PubMed Central  Google Scholar 

  • Turrini A, Bedini A, Loor MB, Santini G, Sbrana C, Giovannetti M et al (2018b) Local diversity of native arbuscularmycorrhizalsymbionts differentially affects growth and nutrition of three crop plant species. Biol Fertil Soils 54:203–217

    Article  Google Scholar 

  • Van Der Heijden MG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  Google Scholar 

  • Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Verbruggen E, Van Der Heijden MG, Weedon JT, Kowalchuk GA, Röling WF (2012) Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol 21:2341–2353

    Article  PubMed  Google Scholar 

  • Vigo C, Norman J, Hooker J (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514

    Article  Google Scholar 

  • Vos C, Yang Y, De Coninck B, Cammue B (2014) Fungal (-like) biocontrol organisms in tomato disease control. Biol Control 74:65–81

    Article  Google Scholar 

  • Walter J, Hein R, Auge H, Beierkuhnlein C, Löffler S, Reifenrath K, Schädler M, Weber M, Jentsch A (2012) How do extreme drought and plant community composition affect host plant metabolites and herbivore performance? Arthropod Plant Interact 6:15–25

    Article  Google Scholar 

  • Werner GD, Kiers ET (2015a) Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytol 205:1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Werner GD, Kiers ET (2015b) Partner selection in the mycorrhizal mutualism. New Phytol 205:1437–1442

    Article  PubMed  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Xavier LJ, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478

    Article  CAS  Google Scholar 

  • Xia T, Wang Y, He Y, Wu C, Shen K, Tan Q et al (2020) An invasive plant experiences greater benefits of root morphology from enhancing nutrient competition associated with arbuscularmycorrhizae in karst soil than a native plant. PLoS One 15(6)

    Google Scholar 

  • Yang H, Zhang Q, Dai Y, Liu Q, Tang J, Bian X, Chen X (2015) Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta-analysis. Plant Soil 389:361–374

    Article  CAS  Google Scholar 

  • Yang R, Zhou G, Zan S, Guo F, Su N, Li J (2014) Arbuscular mycorrhizal fungi facilitate the invasion of Solidago canadensis L. in southeastern China. Acta Oecologica 61:71–77

    Article  Google Scholar 

  • Yang W, Zheng Y, Gao C, He X, Ding Q, Kim Y, Rui Y, Wang S, Guo L-D (2013) The arbuscular mycorrhizal fungal community response to warming and grazing differs between soil and roots on the Qinghai-Tibetan Plateau. PLoS One 8:e76447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao M, Tweddell R, Desilets H (2002) Effect of two vesicular-arbuscularmycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctoniasolani. Mycorriza 12:235–242

    Article  CAS  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Yang R, Tang J, Yang H, Hu S, Chen X (2010a) Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS One 5:e12380

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Hu Y, Zhang K, Tian C, Guo J (2018) Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industr Crops Prod 117:13–19

    Article  CAS  Google Scholar 

  • Zhang Y, Zhong C, Chen Y, Chen Z, Jiang Q, Wu C, Pinyopusarerk K (2010b) Improving drought tolerance of Casuarina equisetifolia seedlings by arbuscular mycorrhizas under glasshouse conditions. New For 40:261–271

    Article  Google Scholar 

  • Zhu H, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542

    Article  CAS  Google Scholar 

  • Zhu X, Song F, Liu S, Liu F (2016) Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO 2. Mycorrhiza 26:133–140

    Article  CAS  PubMed  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010) Arbuscular mycorrhizae improve low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137. https://doi.org/10.1007/s11104-009-0239-z

    Article  CAS  Google Scholar 

  • Ziedan ESH, Sadek Elewa I, Mostafa HM, Sahab AF (2011) Application of mycorrhizae for controlling root diseases of sesame. J Plant Prot Res 51(4)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibrahim, D.S.S. et al. (2024). Unraveling the Mysteries of Mycorrhiza-Plant Interactions: Mechanisms of Protection and Ecological Factors Influencing Symbioses. In: Ansari, R.A., Rizvi, R., Mahmood, I. (eds) Mycorrhizal Symbiosis and Agroecosystem Restoration. Springer, Singapore. https://doi.org/10.1007/978-981-99-5030-0_9

Download citation

Publish with us

Policies and ethics