Skip to main content

Role of Endophytes in the Regulation of Metabolome in Bioenergy Crops

  • Chapter
  • First Online:
Biotechnology and Omics Approaches for Bioenergy Crops

Abstract

Bioenergy crops are a promising renewable energy source that may be used to reduce dependency on fossil fuels and mitigate climate change, though the growth of bioenergy crops can negatively impact the environment and use up a lot of resources like water and fertilizers if improperly managed. Therefore, it is essential to develop efficient and long-lasting methods for cultivating crops for bioenergy. The vital function endophytes perform in controlling the metabolome in bioenergy crops is covered in this book chapter. Microorganisms known as endophytes exist in plant tissues without harming the host plant. They have been discovered to have a significant influence on plant growth and development, particularly in bioenergy crops. The link between endophytes and bioenergy plants, specifically with regard to metabolome control, is the main topic of this chapter. The health and productivity of a plant as a whole are greatly influenced by its metabolome, which is the entire collection of tiny molecules. The information about metabolome regulation by the endophytic microbes may help us regulate the concentration of our desired and target metabolites, thus paving the way towards enhanced efficiency of the bioenergy crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anandham R, Kwon SW, Gandhi PI, Sa TM (2013) Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. J Microbiol Biotechnol 23(2):177–187

    Google Scholar 

  • Baldani JI, Pot B, Kirchhof G, Falsen E, Baldani VLD, Olivares FL, Hoste B (2014) The family Acetobacteraceae. In: The prokaryotes. Springer, Berlin, Heidelberg, pp 3–60

    Google Scholar 

  • Barazani O, von Bargen S, Salas-González I, Koptur S, Seidler TG (2017) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27(1):1–11

    Article  Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5

    Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13(9):492–498

    Article  CAS  PubMed  Google Scholar 

  • Bourne K, Roos A, Bradley R, Blomquist K, Lönn M (2010) Effects of fungal endophytes on willow growth and implications for biomass production. Biomass Bioenergy 34(12):1737–1741

    Google Scholar 

  • Boutard-Hunt C, Henderson M, Cui M, Rioux K, Frailey D, Cheng ZM (2015a) Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination. Front Microbiol 6:1162

    Google Scholar 

  • Boutard-Hunt C, Nguyen HT, Schmitz C, Louis-Seize G (2015b) Effects of fungal endophyte infection and plant genotype on the biomass yield and nutritive quality of reed canarygrass (Phalaris arundinacea L.). Bioenergy Res 8(3):1253–1263

    Google Scholar 

  • Carvalho TLG, Ballesteros HGF, Thiebaut F, Ferreira PCG, Hemerly AS (2014) The interplay between the roles of BZR1 and pri-miR169c in the regulation of the GROWTH-regulating factor genes in Arabidopsis thaliana. Sci Rep 4:1–11

    Google Scholar 

  • Cavalcanti PP, Perdigão Neto LV, Mariano RLR, Barbosa JA, de Souza ADL (2012) Endophytic fungi from leaves of sugarcane (saccharum spp.) and their potential for production of enzymes and secondary metabolites. Braz J Microbiol 43(3):1063–1073

    Google Scholar 

  • Chaudhary A, Sharma A, Khurana JP (2020) Piriformospora indica as a potential bioenhancer: current status and prospects. Front Microbiol 11:582935

    Google Scholar 

  • Chen L, Cai Q, Yuan Q, Guo J, Han Y (2019) Endophytic bacteria bacillus sp. L1 promote plant growth and provide abiotic stress tolerance in Glycyrrhiza uralensis. Microbiol Res 223-225:23–32

    Google Scholar 

  • Chen Y, Zhu J, Shao J, Feng X, Shen Q (2020) Endophytic bacterial diversity of maize roots and their potential for plant growth promotion and biocontrol of fusarium verticillioides. Microbiol Res 232:126399. https://doi.org/10.1016/j.micres.2019.126399

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2010) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2014) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 164(2):799–811

    Google Scholar 

  • Cortez LAB, Silva EA, Oliveira R (2014) Greenhouse gas emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Energy Policy 65:595–606

    Google Scholar 

  • de Oliveira ALM, de Macêdo GR, Carneiro RFV, Guedes HV, de Sousa Lima AO (2013) Endophytic bacteria in nitrogen fixation of sweet sorghum grown in a saline-sodic soil. Afr J Biotechnol 12(13):1421–1427

    Google Scholar 

  • Dong Z, Canny MJ, McCully ME (2017) Endophyte assemblages in roots of switchgrass and Indiangrass grown for biofuel production. J Appl Microbiol 123(4):829–840

    Google Scholar 

  • Feng Y, Lei Y, Zhang B, Liu Z, Wang J, Xing J (2020) Endophytic fungi promote lignocellulosic biomass accumulation in switchgrass. Microorganisms 8(9):1–14

    CAS  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP, Barros WS (2019) Endophytic fungi alter sugarcane's phenylpropanoid metabolism. Plant Soil 441(1–2):381–393

    Google Scholar 

  • Gao F, Chen J, Wen Y, Yang X, Chen L, Li G (2016) Endophytic bacterial communities in Populus euphratica growing on the riverside of the Tarim River in northwestern China. Sci Rep 6:24682. https://doi.org/10.1038/srep24682

    Article  CAS  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF, Kharwar RN (2015) Endophytic bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2016) Bioactive natural products from endophytes: a review. Prikladnaia biokhimiia in mikrobiologiia 52(6):573–583

    Google Scholar 

  • Hardoim PR, Hardoim CCP, van Overbeek LS, Elsas JDV, van Elsas JD (2015) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 10(3):e0123619

    Google Scholar 

  • Huang Y, Wang J, Li S, Huang T, Chen Y, Li Y, Liu Z (2019) Trichoderma harzianum X1 enhances lignocellulosic biomass degradation and biofuel production by modifying lignin structure in switchgrass. Biotechnol Biofuels 12(1):1–16

    Google Scholar 

  • Jangir M, Yadav S, Yadav N, Verma JP, Yadav A (2019) Piriformospora indica: a potential candidate for stress tolerance in plants. In: Stress Physiology of Crop Plants, pp 1–19

    Google Scholar 

  • Jenkins BM, Baxter LL, Miles TR, Miles TR (2013) Combining biomass resources to create a sustainable and secure source of electricity, fuels, and chemicals. Environ Sci Technol 47(21):11450–11458

    Google Scholar 

  • Ji H, Liu Y, Zhang C, Zhao H (2019) Trichoderma harzianum as an endophyte improves drought tolerance in sweet sorghum. J Plant Growth Regul 38(1):125–134. https://doi.org/10.1007/s00344-018-9804-7

    Article  Google Scholar 

  • Johnson LJ, de Bonth AC, Briggs LR et al (2013) The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers 60(1):171–188

    Article  Google Scholar 

  • Kamran M, Parra-Londono S, Baffoe G, Sorensen JL, Lubeck M (2021) Endophytic fungus Trichoderma asperellum promotes growth and abiotic stress tolerance of miscanthus × giganteus under drought stress. J Plant Growth Regul 40(3):1042–1052

    Google Scholar 

  • Kandel SL, Herschberger N, Kim SH, Doty SL, Ryu CM (2017) The endophytic fungus Phomopsis liquidambari mitigates drought stress in Arabidopsis by manipulating the expression of drought-responsive genes. Plant Soil 416(1–2):423–439

    Google Scholar 

  • Kang JG, Kim JY, Lee KJ, Kim SH, Lee YB, Kim JG (2021) The endophytic fungus Curvularia protuberata improves the growth and drought tolerance of Miscanthus sinensis. Microorganisms 9(6):1312

    Google Scholar 

  • Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A (2016) Endophytic fungi: a source of gibberellins and crop yield improvement. Front Microbiol 7:1–14

    Google Scholar 

  • Khan AL, Lee IJ, Lee KE (2018) Endophytic fungal symbionts associated with roots of Miscanthus sinensis planted on saline soil as revealed by cultivation and culture-independent approaches. J Fungal Biol: 1–9

    Google Scholar 

  • Khan AL, Waqas M, Asaf S et al (2019) Endophytic bacteria from sugarcane and their potential in plant growth promotion and phytoprotection. Appl Microbiol Biotechnol 103(7):3119–3131

    Google Scholar 

  • Khan AL, Waqas M, Khan AR et al (2020) Endophytic bacteria from Jatropha curcas augment the production of bioactive compounds and enhance growth and drought tolerance in Arabidopsis thaliana. Sci Rep 10(1):1–13

    Google Scholar 

  • Khan MZ, Wang J, Xue J (2021) Isolation and characterization of endophytic bacteria from Miscanthus sinensis and their potential for plant growth promotion. Microorganisms 9(2):360

    Google Scholar 

  • Kim JI, Lee S, Jang HA, Lee KB, Kim KY, Lee KJ, An CH (2012) Effect of bacterial inoculation on growth and gibberellin production of miscanthus × giganteus. J Microbiol Biotechnol 22(3):327–332

    Google Scholar 

  • Klotz KL, York GM, Hickey WJ (2002) Endophyte-mediated resistance to an herbivorous pest in a native grass. Oecologia 131(3):526–532

    Google Scholar 

  • Kohl J, Baerson SR, Song Z et al (2015) Fungal endophyte Phomopsis liquidambari produces bioactive terpenoids and increases the production of the host plant biomass. J Nat Prod 78(5):1185–1192

    Google Scholar 

  • Kuldau GA, Bacon CW (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46(1):57–71

    Article  Google Scholar 

  • Kumar A, Singh AK, Singh M, Pandey KD (2018a) Endophytic fungi-mediated bioprospecting and antimicrobial potential of bioactive compounds from Miscanthus sinensis Andersson. J Pure Appl Microbiol 12(2):1029–1039

    Google Scholar 

  • Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2018b) Deciphering the diversity of culturable thermotolerant bacteria from the rhizosphere of different miscanthus species. 3. Biotech 8(9):392. https://doi.org/10.1007/s13205-018-1412-4

    Article  Google Scholar 

  • Li Y, Wei Y, Gao Y, Wu X, Zhang H, Hu T (2021a) Endophytic bacteria promote growth and stress tolerance of switchgrass (Panicum virgatum L.) by regulating gene expression and metabolic pathways. Plant Soil 461(1–2):133–149

    Google Scholar 

  • Li Q, Yan Y, Wang X, Wei J, Li Y, Li M, Li J (2021b) Piriformospora indica colonization improves nutrient uptake and accumulation of miscanthus under nitrogen deficiency. Plant Soil 464(1–2):205–218

    Google Scholar 

  • Liu X, Shi Y, Ma J, Du Z (2017) The bioactive compound produced by endophytic fungus (L-4) isolated from Miscanthus sinensis enhances plant growth and lignocellulose degradation. AMB Express 7(1):1–11

    Google Scholar 

  • Lopez-Bucio J, Nieto-Jacobo MF, Ramirez-Rodriguez V, Herrera-Estrella L (2015) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 24(1):1–8

    Article  Google Scholar 

  • Lopez-Lopez O, García-Sánchez MA, Rodríguez-Salazar J, Glick BR, Cassab GI (2014) Promotion of growth of tomato (Solanum lycopersicum L.) by phosphate-solubilizing Enterobacter sp. and Herbaspirillum sp. Rev Argent Microbiol 46(3):217–223

    Google Scholar 

  • Louwagie SA, Benoit DL, Broeckling CD (2016a) The role of microbial endophytes in plant biomass conversion. In: Bioenergy research: advances and applications. CRC Press, pp 221–247

    Google Scholar 

  • Louwagie SA, Korndörfer GH, De Bruyn F (2016b) Fungal endophytes from Festuca arundinacea promote growth and enhance carbon accumulation in switchgrass. Fungal Ecol 22:19–28

    Google Scholar 

  • Mahmood A, Kataoka R (2019) Application of endophytes through seed priming. In: Priming and pretreatment of seeds and seedlings: implication in plant stress tolerance and enhancing productivity in crop plants, pp 509–521

    Google Scholar 

  • Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotechnol 4(4):523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinowski DP, Brauer DK, Belesky DP (1999) The endophyte Neotyphodium coenophialum affects root morphology of tall fescue grown under phosphorus deficiency. J Agron Crop Sci 183:53–60

    Article  CAS  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7(10):e48479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mousa WK, Shearer CR, Limay-Rios V, Zhou T, Raizada MN, Miller SS (2015) Deciphering the molecular mechanisms of maize-endophyte interactions: simultaneous analysis of transcriptome and metabolome. BMC Genomics 16(1):1–22. https://doi.org/10.1186/s12864-015-1402-9

    Article  Google Scholar 

  • Niu B, Vaddella V, Chilukuri VG, Katam R, Smith JR, Wang G (2018) Evaluation of endophytic fungi from sweet sorghum for production of enzymes involved in lignocellulose degradation. Bioresour Technol 259:152–159

    Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M, Ismail MR (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E et al (2009a) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 3(4):404–416

    Article  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman ARA (2009b) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19(8):827–837

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Wäli PR, Helander M, Faeth SH (2010) Evolution of endophyte-plant symbioses. Trends Plant Sci 15(2):58–64. https://doi.org/10.1016/j.tplants.2009.11.004

    Article  CAS  Google Scholar 

  • Santos VM, Mariano RL, Faria FA, de Souza JT, de Souza AD (2014) Trichoderma asperellum T76J and Trichoderma virens TV1C for plant growth promotion and biological control in sugarcane. Arch Microbiol 196(7):525–530. https://doi.org/10.1007/s00203-014-0995-5

    Article  Google Scholar 

  • Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Lurie E, Eilers BJ (2017) Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. MBio 8(4):e00764–e00717

    Article  PubMed  PubMed Central  Google Scholar 

  • Sathya A, Vijayabharathi R, Sankari M, Gopalakrishnan S, Udayakumar M (2020) Piriformospora indica root colonization improves biomass and photosynthetic efficiency of miscanthus under drought stress. Biomol Ther 10(5):768

    Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Li X, Sun Y et al (2019) Endophytic fungus fusarium solani LHL06 affects the growth and metabolome of switchgrass (Panicum virgatum L.). Front Microbiol 10:1896. https://doi.org/10.3389/fmicb.2019.01896

    Article  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (2018) Endophytic fungi in miscanthus x giganteus can affect plant growth, stress tolerance, and expression of abiotic stress-responsive genes. Front Microbiol 9:2672

    Google Scholar 

  • Suleman P, Abbasi MK, Ahmed N, Khalid A (2019a) Endophytic bacteria from bioenergy crops enhance plant growth and stress tolerance. J Basic Microbiol 59(8):815–827

    Google Scholar 

  • Suleman P, Akter S, Lee SS, Woo SH, Yang JE, Lee IJ (2019b) Endophytic bacteria from bioenergy crops enhance plant growth and nutrient content in maize. Biotechnol Biofuels 12(1):1–16

    Google Scholar 

  • Sun J, Zhang Q, Zhou J, Zhang Z, Fan Q, Zhang X, Zheng Y (2019) Endophytic fungal communities in roots of maize (Zea mays L.) in response to soil drought. Appl Soil Ecol 135:79–86. https://doi.org/10.1016/j.apsoil.2018.11.015

    Article  Google Scholar 

  • Tian P, Wang L, Li X, Wang P, Wang S, Guo B (2021) Effects of endophytic fungi on the production of bioactive compounds and antioxidant capacity of switchgrass (Panicum virgatum L.). Bioresour Bioprocess 8(1):1–13

    Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314(5805):1598–1600

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS (2016) Diversity of endophytic fungi in different varieties of the bioenergy plant, Miscanthus. Front Microbiol 7:1377

    Google Scholar 

  • Vargas-Garcia MC, Lopez-Moya F, Suarez-Estrella F, Jurado M (2015) Endophytic fungi from maize as new sources of the antifungal protein PAF and other hydrolytic enzymes. Microb Cell Factories 14(1):1–11

    Google Scholar 

  • Vega FE, Pava-Ripoll M, Posada F, Buyer JS, Tenorio E (2018) Endophytic bacteria in Coffea arabica L. J Basic Microbiol 58(3):229–240

    Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:1–10

    Article  Google Scholar 

  • Wang Y, Wang C, Cheng J, Zhang H, Wang M (2016) Piriformospora indica enhances switchgrass growth and seed yield under drought stress conditions. Crop Sci 56(4):1754–1762

    Google Scholar 

  • Wang Z, Peng Y, Zhang C et al (2020) Endophytic fungi from switchgrass living in saline soils can enhance plant growth and alleviate salt stress. Environ Exp Bot 169:103886

    Google Scholar 

  • Wawrik B, Mendivelso M, Parisi VA, Suflita JM, David MM (2016a) Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, trona, CA, USA. Front Microbiol 7:758

    Google Scholar 

  • Wawrik B, Mendivelso M, Parisi VA et al (2016b) Field evidence of selenium methylation by organisms using inorganic selenium as a growth substrate. Appl Environ Microbiol 82(11):3371–3380

    Google Scholar 

  • Wei L, Shang Q, Wei J, Zhang S, Xu Y, Huang Y (2019) Endophytic fungi from miscanthus as plant growth promoters and their in vitro antifungal activity against plant pathogenic fungi. J Appl Microbiol 126(3):765–775

    Google Scholar 

  • White JF Jr, Morrow AC, Morgan-Jones G, Chambless DA (1991) Endophyte-host associations in forage grasses. XIV. Primary stromata formation and seed transmission in Epichloë typhina: developmental and regulatory aspects. Mycologia 83(1):72–81

    Article  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Xu L, Chen W, Xu B, Li Y, Shen Q (2020) Endophytic fungus Trichoderma asperellum improves switchgrass growth and root system development in the marginal soil. Plant Soil 454(1–2):477–494

    Google Scholar 

  • Yuan Y, Chen Y, Zhao J, Yan X (2020a) Endophytic fungi enhance amino acid accumulation and biomass production in switchgrass. Biomass Bioenergy 134:105534

    Google Scholar 

  • Yuan Z, Zhang C, Lin F, Kubicek CP, Wu B (2020b) The regulatory mechanisms of endophytic fungi in the metabolite profile of switchgrass. Microb Cell Factories 19(1):1–11

    Google Scholar 

  • Zhang H, Muruiki CM, Tang M (2017) Effects of endophytic bacteria on maize growth under greenhouse and field conditions. Can J Plant Sci

    Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2018a) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 31(2):258–269

    Google Scholar 

  • Zhang, Q., Li, S., Zhang, X., et al. (2018b). Endophytic bacteria improve the growth of maize by increasing plant photosynthesis and reducing oxidative damage. J Appl Microbiol, 125(6), 1825–1836. https://doi.org/https://doi.org/10.1111/jam.14032

  • Zhang H, Tang M, Chen H, Wang Y, Xu K, Jiao Y, Yang Y (2018c) Growth-promoting endophytic bacteria enhance switchgrass (Panicum virgatum L.) growth and biomass production. Appl Microbiol Biotechnol 102(18):8029–8044

    Google Scholar 

  • Zhang Q, Wang M, Zhang L, Zeng Q, Zhang W, Wei G, Li Y (2019) Comparative metagenomics reveals microbial community differentiation in sugarcane rhizosphere and endosphere. Front Microbiol 10:1659

    Google Scholar 

  • Zhang H, Wang Y, Wu Y et al (2021) Promotion of maize growth and metabolite profile by endophytic bacteria. Microorganisms 9(3):556

    CAS  Google Scholar 

  • Zhao S, Wei J, Zhao Y et al (2018) Endophytic bacteria improve switchgrass growth, biomass, and root lignocellulose composition. J Agric Food Chem 66(5):1112–1122

    Google Scholar 

  • Zhao X, Zhang H, Wei H, Chen L, Liu H, Wang Y, Huang L (2019) Endophytic bacteria promote plant growth, alleviate stress and alter metabolite profile in switchgrass. Front Plant Sci 10:1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hasan Riaz or Ahmad Mahmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdin, M.Z.U. et al. (2023). Role of Endophytes in the Regulation of Metabolome in Bioenergy Crops. In: Aasim, M., Baloch, F.S., Nadeem, M.A., Habyarimana, E., Ahmed, S., Chung, G. (eds) Biotechnology and Omics Approaches for Bioenergy Crops. Springer, Singapore. https://doi.org/10.1007/978-981-99-4954-0_9

Download citation

Publish with us

Policies and ethics