Skip to main content

Epigenetic Regulators of Inflammatory Gene Expression

  • Chapter
  • First Online:
Targeting Epigenetics in Inflammatory Lung Diseases

Abstract

Epigenetics is defined as changes in the expression of genes whose core is confined within a non-expressed portion of DNA. All the mechanisms of epigenetics including DNA methylation, acetylation of histones and micro-RNAs and all these factors are under the direct control of diet, age, maternal mental health and environmental factors. There is an increasing suggestion of epigenetics in the expansion of several lung diseases. Epigenetics also exerts its influence over inflammation which is a common feature of many lungs inflammatory diseases including COPD, asthma and IPF. All the immune cells which play a vital part in the growth of inflammation also fall under the control of epigenetic changes. Epigenetics influences both adaptive and innate branches of protection to bring inflammation at a heightened rate in inflammatory diseases by controlling their activity and differentiation. Immune cells are generally associated with protective responses to harm in lung inflammatory diseases. Hence, therapeutics targeting epigenetics have emerged as attractive candidates that in addition to controlling epigenetic mechanisms control gene activity, thus providing a suitable alternative in place of already available drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zwinderman MRH, de Weerd S, Dekker FJ. Targeting HDAC complexes in asthma and COPD. Epigenomes. 2019;3(3):19.

    Google Scholar 

  2. Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;7:246.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sauleda J, et al. Idiopathic pulmonary fibrosis: epidemiology, natural history, phenotypes. Med Sci (Basel). 2018;6(4):110.

    Google Scholar 

  4. Navaratnam V, et al. The rising incidence of idiopathic pulmonary fibrosis in the U.K. Thorax. 2011;66(6):462–7.

    Article  CAS  PubMed  Google Scholar 

  5. Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med. 2018;378(19):1811–23.

    Article  CAS  PubMed  Google Scholar 

  6. Huang C, Yang Y, Liu L. Interaction of long noncoding RNAs and microRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Physiol Genomics. 2015;47(10):463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van den Bossche J, et al. Macrophage polarization: the epigenetic point of view. Curr Opin Lipidol. 2014;25(5):367–73.

    Article  PubMed  Google Scholar 

  8. Kumaki Y, et al. Analysis and synthesis of high-amplitude cis-elements in the mammalian circadian clock. Proc Natl Acad Sci U S A. 2008;105(39):14946–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heinz S, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patel DJ. A structural perspective on readout of epigenetic histone and DNA methylation Marks. Cold Spring Harb Perspect Biol. 2016;8(3):a018754.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lavin Y, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014;159(6):1312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li R, et al. MEG3-4 is a miRNA decoy that regulates IL-1beta abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Sci Signal. 2018;11(536):eaao2387.

    Google Scholar 

  13. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.

    Article  CAS  PubMed  Google Scholar 

  14. Yan Q, et al. Nuclear factor-kappaB binding motifs specify toll-like receptor-induced gene repression through an inducible repressosome. Proc Natl Acad Sci U S A. 2012;109(35):14140–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen X, et al. The NF-kappaB factor RelB and histone H3 lysine methyltransferase G9a directly interact to generate epigenetic silencing in endotoxin tolerance. J Biol Chem. 2009;284(41):27857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seeley JJ, et al. Induction of innate immune memory via microRNA targeting of chromatin remodelling factors. Nature. 2018;559(7712):114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bullwinkel J, et al. Epigenotype switching at the CD14 and CD209 genes during differentiation of human monocytes to dendritic cells. Epigenetics. 2011;6(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  18. Quintin J, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12(2):223–32.

    Article  CAS  PubMed  Google Scholar 

  19. Medoff BD, Thomas SY, Luster AD. T cell trafficking in allergic asthma: the ins and outs. Annu Rev Immunol. 2008;26:205–32.

    Article  CAS  PubMed  Google Scholar 

  20. Sidler C, et al. Immunosenescence is associated with altered gene expression and epigenetic regulation in primary and secondary immune organs. Front Genet. 2013;4:211.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Degerman S, et al. Immortalization of T-cells is accompanied by gradual changes in CpG methylation resulting in a profile resembling a subset of T-cell leukemias. Neoplasia. 2014;16(7):606–15.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Murayama A, et al. A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory. EMBO J. 2006;25(5):1081–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Northrop JK, et al. Epigenetic remodeling of the IL-2 and IFN-gamma loci in memory CD8 T cells is influenced by CD4 T cells. J Immunol. 2006;177(2):1062–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wright KL, Ting JP. Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol. 2006;27(9):405–12.

    Article  CAS  PubMed  Google Scholar 

  25. Schoenborn JR, et al. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma. Nat Immunol. 2007;8(7):732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cohen CJ, et al. Human Th1 and Th17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. J Immunol. 2011;187(11):5615–26.

    Article  CAS  PubMed  Google Scholar 

  27. Akimzhanov AM, Yang XO, Dong C. Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J Biol Chem. 2007;282(9):5969–72.

    Article  CAS  PubMed  Google Scholar 

  28. Baron U, et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol. 2007;37(9):2378–89.

    Article  CAS  PubMed  Google Scholar 

  29. van Loosdregt J, et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood. 2010;115(5):965–74.

    Article  PubMed  Google Scholar 

  30. Maier H, et al. Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat Immunol. 2004;5(10):1069–77.

    Article  CAS  PubMed  Google Scholar 

  31. Crouch EE, et al. Regulation of AID expression in the immune response. J Exp Med. 2007;204(5):1145–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caganova M, et al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest. 2013;123(12):5009–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Good-Jacobson KL. Regulation of germinal center, B-cell memory, and plasma cell formation by histone modifiers. Front Immunol. 2014;5:596.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luckey CJ, et al. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc Natl Acad Sci U S A. 2006;103(9):3304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weng NP, Araki Y, Subedi K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat Rev Immunol. 2012;12(4):306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Steinfelder S, et al. Epigenetic modification of the human CCR6 gene is associated with stable CCR6 expression in T cells. Blood. 2011;117(10):2839–46.

    Article  CAS  PubMed  Google Scholar 

  37. Araki Y, et al. Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells. Immunity. 2009;30(6):912–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuraoka M, et al. Activation-induced cytidine deaminase mediates central tolerance in B cells. Proc Natl Acad Sci U S A. 2011;108(28):11560–5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ogbomo H, et al. Histone deacetylase inhibitors suppress natural killer cell cytolytic activity. FEBS Lett. 2007;581(7):1317–22.

    Article  CAS  PubMed  Google Scholar 

  40. Pelaia G, et al. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediat Inflamm. 2015;2015:879783.

    Article  Google Scholar 

  41. Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest. 2008;118(11):3546–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Castillo JR, Peters SP, Busse WW. Asthma exacerbations: pathogenesis, prevention, and treatment. J Allergy Clin Immunol Pract. 2017;5(4):918–27.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schleimer RP, et al. Epithelium: at the interface of innate and adaptive immune responses. J Allergy Clin Immunol. 2007;120(6):1279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perera F, et al. Relation of DNA methylation of 5’-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One. 2009;4(2):e4488.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Prunicki M, et al. Exposure to NO(2), CO, and PM(2.5) is linked to regional DNA methylation differences in asthma. Clin Epigenetics. 2018;10:2.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhou J, et al. PM(2.5) exposure and cold stress exacerbates asthma in mice by increasing histone acetylation in IL-4 gene promoter in CD4(+) T cells. Toxicol Lett. 2019;316:147–53.

    Article  CAS  PubMed  Google Scholar 

  47. Boyce JA. Mast cells: beyond IgE. J Allergy Clin Immunol. 2003;111(1):24–32. quiz 33

    Article  CAS  PubMed  Google Scholar 

  48. Galli SJ, et al. Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol. 2005;23:749–86.

    Article  CAS  PubMed  Google Scholar 

  49. Peters-Golden M. The alveolar macrophage: the forgotten cell in asthma. Am J Respir Cell Mol Biol. 2004;31(1):3–7.

    Article  CAS  PubMed  Google Scholar 

  50. Wenzel SE, et al. Bronchoscopic evaluation of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med. 1997;156(3 Pt 1):737–43.

    Article  CAS  PubMed  Google Scholar 

  51. Oh CK, et al. Biology of the interleukin-9 pathway and its therapeutic potential for the treatment of asthma. Inflamm Allergy Drug Targets. 2011;10(3):180–6.

    Article  CAS  PubMed  Google Scholar 

  52. Stirling RG, et al. Interleukin-5 induces CD34(+) eosinophil progenitor mobilization and eosinophil CCR3 expression in asthma. Am J Respir Crit Care Med. 2001;164(8 Pt 1):1403–9.

    Article  CAS  PubMed  Google Scholar 

  53. Ishmael FT. The inflammatory response in the pathogenesis of asthma. J Am Osteopath Assoc. 2011;111(11 Suppl 7):S11–7.

    PubMed  Google Scholar 

  54. Karta MR, et al. LPS modulates rhinovirus-induced chemokine secretion in monocytes and macrophages. Am J Respir Cell Mol Biol. 2014;51(1):125–34.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Girodet PO, et al. Alternative macrophage activation is increased in asthma. Am J Respir Cell Mol Biol. 2016;55(4):467–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ayakannu R, et al. Relationship between various cytokines implicated in asthma. Hum Immunol. 2019;80(9):755–63.

    Article  CAS  PubMed  Google Scholar 

  57. Chesne J, et al. IL-17 in severe asthma. Where do we stand? Am J Respir Crit Care Med. 2014;190(10):1094–101.

    Article  CAS  PubMed  Google Scholar 

  58. Louten J, Boniface K, de Waal Malefyt R. Development and function of TH17 cells in health and disease. J Allergy Clin Immunol. 2009;123(5):1004–11.

    Article  CAS  PubMed  Google Scholar 

  59. Strickland DH, Holt PG. T regulatory cells in childhood asthma. Trends Immunol. 2011;32(9):420–7.

    Article  CAS  PubMed  Google Scholar 

  60. Rodrigues SO, et al. Mechanisms, pathophysiology and currently proposed treatments of chronic obstructive pulmonary disease. Pharmaceuticals (Basel). 2021;14(10):979.

    Google Scholar 

  61. Keatings VM, et al. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med. 1996;153(2):530–4.

    Article  CAS  PubMed  Google Scholar 

  62. Kim WD, et al. Abnormal peripheral blood T-lymphocyte subsets in a subgroup of patients with COPD. Chest. 2002;122(2):437–44.

    Article  PubMed  Google Scholar 

  63. Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J. 2001;17(5):946–53.

    Article  CAS  PubMed  Google Scholar 

  64. Shapiro SD, et al. Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am J Pathol. 2003;163(6):2329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Di Stefano A, et al. Upregulation of adhesion molecules in the bronchial mucosa of subjects with chronic obstructive bronchitis. Am J Respir Crit Care Med. 1994;149(3 Pt 1):803–10.

    Article  PubMed  Google Scholar 

  66. Traves SL, et al. Increased levels of the chemokines GROalpha and MCP-1 in sputum samples from patients with COPD. Thorax. 2002;57(7):590–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Russell RE, et al. Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2002;26(5):602–9.

    Article  CAS  PubMed  Google Scholar 

  68. Kim WD, et al. Centrilobular and panlobular emphysema in smokers. Two distinct morphologic and functional entities. Am Rev Respir Dis. 1991;144(6):1385–90.

    Article  CAS  PubMed  Google Scholar 

  69. Lim S, et al. Balance of matrix metalloprotease-9 and tissue inhibitor of metalloprotease-1 from alveolar macrophages in cigarette smokers. Regulation by interleukin-10. Am J Respir Crit Care Med. 2000;162(4 Pt 1):1355–60.

    Article  CAS  PubMed  Google Scholar 

  70. Finkelstein R, et al. Alveolar inflammation and its relation to emphysema in smokers. Am J Respir Crit Care Med. 1995;152(5 Pt 1):1666–72.

    Article  CAS  PubMed  Google Scholar 

  71. Saetta M, et al. CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(2):711–7.

    Article  CAS  PubMed  Google Scholar 

  72. Nurwidya F, Damayanti T, Yunus F. The role of innate and adaptive immune cells in the Immunopathogenesis of chronic obstructive pulmonary disease. Tuberc Respir Dis (Seoul). 2016;79(1):5–13.

    Article  PubMed  Google Scholar 

  73. Tager AM, et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med. 2008;14(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  74. Munger JS, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999;96(3):319–28.

    Article  CAS  PubMed  Google Scholar 

  75. Thannickal VJ, et al. Mechanisms of pulmonary fibrosis. Annu Rev Med. 2004;55:395–417.

    Article  CAS  PubMed  Google Scholar 

  76. White GP, et al. CpG methylation patterns in the IFNgamma promoter in naive T cells: variations during Th1 and Th2 differentiation and between atopics and non-atopics. Pediatr Allergy Immunol. 2006;17(8):557–64.

    Article  PubMed  Google Scholar 

  77. Shang Y, et al. Epigenetic alterations by DNA methylation in house dust mite-induced airway hyperresponsiveness. Am J Respir Cell Mol Biol. 2013;49(2):279–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Barnes PJ. Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6(8):693–6.

    Article  CAS  PubMed  Google Scholar 

  79. Sofer T, et al. Exposure to airborne particulate matter is associated with methylation pattern in the asthma pathway. Epigenomics. 2013;5(2):147–54.

    Article  CAS  PubMed  Google Scholar 

  80. Ren Y, et al. Identification of histone acetylation in a murine model of allergic asthma by proteomic analysis. Exp Biol Med (Maywood). 2021;246(8):929–39.

    Article  CAS  PubMed  Google Scholar 

  81. Wei W, Chen W, He N. HDAC4 induces the development of asthma by increasing slug-upregulated CXCL12 expression through KLF5 deacetylation. J Transl Med. 2021;19(1):258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu F, Shang YX. Sirtuin 6 attenuates epithelial-mesenchymal transition by suppressing the TGF-beta1/Smad3 pathway and c-Jun in asthma models. Int Immunopharmacol. 2020;82:106333.

    Article  CAS  PubMed  Google Scholar 

  83. Haberg SE, et al. Folic acid supplements in pregnancy and early childhood respiratory health. Arch Dis Child. 2009;94(3):180–4.

    Article  CAS  PubMed  Google Scholar 

  84. Stefanowicz D, et al. Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts. BMC Pulm Med. 2017;17(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yang ZC, et al. MiR-448-5p inhibits TGF-beta1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma. J Cell Physiol. 2019;234(6):8804–14.

    Article  CAS  PubMed  Google Scholar 

  86. Alashkar Alhamwe B, et al. Epigenetic regulation of airway epithelium immune functions in asthma. Front Immunol. 2020;11:1747.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hudon Thibeault AA, Laprise C. Cell-specific DNA methylation signatures in asthma. Genes (Basel). 2019;10(11):932.

    Google Scholar 

  88. Kuramasu A, et al. Mast cell−/basophil-specific transcriptional regulation of human L-histidine decarboxylase gene by CpG methylation in the promoter region. J Biol Chem. 1998;273(47):31607–14.

    Article  CAS  PubMed  Google Scholar 

  89. Moheimani F, et al. The genetic and epigenetic landscapes of the epithelium in asthma. Respir Res. 2016;17(1):119.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wei G, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity. 2009;30(1):155–67.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wen T, Rothenberg ME. The regulatory function of eosinophils. Microbiol Spectr. 2016;4(5):4–5.

    Google Scholar 

  92. Marcet B, et al. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/notch pathway. Nat Cell Biol. 2011;13(6):693–9.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang H, et al. miR-221 participates in the airway epithelial cells injury in asthma via targeting SIRT1. Exp Lung Res. 2018;44(6):272–9.

    Article  PubMed  Google Scholar 

  94. Zhang K, et al. Decreased epithelial and sputum miR-221-3p associates with airway eosinophilic inflammation and CXCL17 expression in asthma. Am J Physiol Lung Cell Mol Physiol. 2018;315(2):L253–64.

    Article  CAS  PubMed  Google Scholar 

  95. Clifford RL, et al. Altered DNA methylation is associated with aberrant gene expression in parenchymal but not airway fibroblasts isolated from individuals with COPD. Clin Epigenetics. 2018;10:32.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hazari YM, et al. Alpha-1-antitrypsin deficiency: genetic variations, clinical manifestations and therapeutic interventions. Mutat Res Rev Mutat Res. 2017;773:14–25.

    Article  CAS  PubMed  Google Scholar 

  97. Pfaff M, et al. Activation of the SPHK/S1P signalling pathway is coupled to muscarinic receptor-dependent regulation of peripheral airways. Respir Res. 2005;6(1):48.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Song J, et al. Aberrant DNA methylation and expression of SPDEF and FOXA2 in airway epithelium of patients with COPD. Clin Epigenetics. 2017;9:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Barnawi J, et al. Potential link between the Sphingosine-1-phosphate (S1P) system and defective alveolar macrophage phagocytic function in chronic obstructive pulmonary disease (COPD). PLoS One. 2015;10(10):e0122771.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Epaud R, et al. Knockout of insulin-like growth factor-1 receptor impairs distal lung morphogenesis. PLoS One. 2012;7(11):e48071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu JP, et al. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993;75(1):59–72.

    CAS  PubMed  Google Scholar 

  102. Nakahira K, Hisata S, Choi AM. The roles of mitochondrial damage-associated molecular patterns in diseases. Antioxid Redox Signal. 2015;23(17):1329–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang L, et al. Epigenetic modifications and therapy in chronic obstructive pulmonary disease (COPD): an update review. COPD. 2020;17(3):333–42.

    Article  PubMed  Google Scholar 

  104. Qi X, et al. LncRNAs NR-026690 and ENST00000447867 are upregulated in CD4(+) T cells in patients with acute exacerbation of COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:699–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Long YJ, et al. miR-34a is involved in CSE-induced apoptosis of human pulmonary microvascular endothelial cells by targeting Notch-1 receptor protein. Respir Res. 2018;19(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jalali S, et al. Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS One. 2012;7(10):e46808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Karch A, et al. The German COPD cohort COSYCONET: aims, methods and descriptive analysis of the study population at baseline. Respir Med. 2016;114:27–37.

    Article  PubMed  Google Scholar 

  108. Tennis MA, et al. Methylation of Wnt7a is modulated by DNMT1 and cigarette smoke condensate in non-small cell lung cancer. PLoS One. 2012;7(3):e32921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sanders YY, et al. Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2008;39(5):610–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Helling BA, Yang IV. Epigenetics in lung fibrosis: from pathobiology to treatment perspective. Curr Opin Pulm Med. 2015;21(5):454–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li H, et al. MicroRNAs in idiopathic pulmonary fibrosis: involvement in pathogenesis and potential use in diagnosis and therapeutics. Acta Pharm Sin B. 2016;6(6):531–9.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Pottier N, et al. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions. PLoS One. 2009;4(8):e6718.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Maurer B, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62(6):1733–43.

    Article  CAS  PubMed  Google Scholar 

  114. Song X, et al. Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis. J Cell Mol Med. 2014;18(6):991–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cao G, et al. Differential expression of long non-coding RNAs in bleomycin-induced lung fibrosis. Int J Mol Med. 2013;32(2):355–64.

    Article  CAS  PubMed  Google Scholar 

  116. Taganov KD, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103(33):12481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu G, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207(8):1589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Singer BD, et al. Regulatory T cell DNA methyltransferase inhibition accelerates resolution of lung inflammation. Am J Respir Cell Mol Biol. 2015;52(5):641–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu Y, et al. Therapeutic delivery of MicroRNA-29b by cationic Lipoplexes for lung cancer. Mol Ther Nucleic Acids. 2013;2(4):e84.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Dakhlallah D, et al. Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 2013;187(4):397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ganesan S, et al. Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir Res. 2010;11(1):131.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cosio BG, et al. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med. 2004;200(5):689–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Coward WR, et al. Repression of IP-10 by interactions between histone deacetylation and hypermethylation in idiopathic pulmonary fibrosis. Mol Cell Biol. 2010;30(12):2874–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Filippakopoulos P, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pandit KV, Milosevic J, Kaminski N. MicroRNAs in idiopathic pulmonary fibrosis. Transl Res. 2011;157(4):191–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasvinder Singh Bhatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, S. et al. (2023). Epigenetic Regulators of Inflammatory Gene Expression. In: Gupta, G., Oliver, B.G., Dua, K., Ali, M.K., Dave, P. (eds) Targeting Epigenetics in Inflammatory Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-4780-5_4

Download citation

Publish with us

Policies and ethics