Skip to main content

Dynamics of Double Nitrogen-Vacancy Centre in a Photonic Crystal Nanocavity: Optical Bistability and Four-Wave Mixing

  • Conference paper
  • First Online:
Recent Advances in Nanotechnology (ICNOC 2022)

Part of the book series: Springer Proceedings in Materials ((SPM,volume 28))

  • 204 Accesses

Abstract

Over the past decade, confinement of light to microscales has produced fruitful advancements in quantum optics. Cavity resonators are convenient tools of Cavity Quantum Electrodynamics (CQED) to study interaction of light and matter. Large number of studies have been carried out on nitrogen-vacancy (NV) centre coupled with photonic crystal nanocavities. On the nanoscale level, the coupling of NV centre to cavities has been extensively studied (Vahala in Nature 424:839–846, 2003). These include microtoroids (Vuckovic in Quantum Optics and Nanophotonics. Oxford University Press, pp. 365–403, 2014), microdisks (Aspelmeyer et al. J Opt Soc Am B 27: 189, 2010), microsphere resonators (Aspelmeyer et al. in Phys Today 65:29, 2012), and PC nanocavities. In this article, we investigate the dynamics of hybrid optical system consisting of photonic crystal nanocavity having double NV centre in it. We look into the bistability and four-wave mixing of the system. In this study, it is shown that the system exhibits the phenomena of optical bistability, which can be achieved for some different combinations of system parameters, at a lower power. The system under consideration finds application in all optical switches and memory devices used in quantum information processing where system requires low power. We also find that the system under consideration exhibits four-wave mixing due to nonlinear behaviour of the system. The results so obtained can be employed to further understand the solid-state CQED. Since the NV centre has well-defined quantum states with well-defined bandgap, which can be easily initialised by optical pumping mechanism thereby making them a potential candidate in quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vahala KJ (2003) Nature (London) 424:839–846

    Article  CAS  Google Scholar 

  2. Vuckovic J (2014) Quantum optics and nanophotonics. Oxford University Press 8:365–403

    Google Scholar 

  3. Aspelmeyer M, Gr* oblacher S, Hammerer K, Kiesel N (2010) J Opt Soc Am B 27:189

    Google Scholar 

  4. Aspelmeyer M, Meystre P, Schwab K (2012) Phys Today 65:29

    Article  CAS  Google Scholar 

  5. Zhang P, Wang YD, Sun CP (2005) Phys Rev Lett 95:097204

    Article  CAS  Google Scholar 

  6. Xue F, Wang YD, Sun CP, Okamoto H, Yamaguchi H, Semba K (2007) New J Phys 9:35

    Article  Google Scholar 

  7. LaHaye MD, Suh J, Echternach PM, Schwab KC, Roukes ML (2009) Nature (London) 459:960

    Article  CAS  Google Scholar 

  8. Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P, Seidelin S (2011) Nat Phys 7:879

    Google Scholar 

  9. Bennett SD, Yao NY, Otterbach J, Zoller P, Rabl P, Lukin MD (2013) Phys Rev Lett 110:156402

    Google Scholar 

  10. Kippenberg TJ, Vahala KJ (2008) Science 321:1172

    Article  CAS  Google Scholar 

  11. Chan J, Alegre TPM, Safavi-Naeini AH, Hill JT, Krause A, Groblacher S, Aspelmeyer M, Painter O (2011) Nature (London) 478:89

    Article  CAS  Google Scholar 

  12. Dong CH, Fiore V, Kuzyk MC, Wang H (2012) Science 338:1609

    Article  CAS  Google Scholar 

  13. Li ZY, Jin GR, Yin TS, Chen A (2022) Photonics 9:70

    Article  Google Scholar 

  14. Bothner D, Rodrigues IC, Steele GA (2022) Commun Phys 5:33

    Google Scholar 

  15. Sun CP, Wei LF, Liu YX, Nori F (2006) Phys Rev A 73:022318

    Article  Google Scholar 

  16. Marquardt F, Girvin SM (2009) Trend: Optomechanics. Physics 2:40

    Article  Google Scholar 

  17. Gao M, Liu YX, Wang XB (2011) Phys Rev A 83:022309

    Article  Google Scholar 

  18. Verhagen E, Deleglise S, Weis S, Schliesser A, Kippenberg TJ (2012) Nature (London) 482:63

    Article  CAS  Google Scholar 

  19. Treutlein P, Genes C, Hammerer K, Poggio M, Rabl P (2014) Cavity Optomech 327–351

    Google Scholar 

  20. Meystre P (2013) A short walk through quantum optomechanics. Ann Phys 525:215–233

    Article  CAS  Google Scholar 

  21. Akahane Y, Asano T, Song BS, Noda S (2003) Nature (London) 425:944–947

    Article  CAS  Google Scholar 

  22. Song BS, Noda S, Asano T, Akahane Y (2005) Nat Mater 4:207–210

    Article  CAS  Google Scholar 

  23. Noda S, Fujita M, Asano T (2007) Nat Photonics 1:449–458

    Article  CAS  Google Scholar 

  24. Pan J, Huo Y, Sandhu S, Stuhrmann N, Povinelli ML, Harris JS, Fejer MM, Fan S (2010) Appl Phys Lett 97:101102

    Article  Google Scholar 

  25. Pan J, Sandhu S, Huo Y, Stuhrmann N, Povinelli ML, Harris JS, Fejer MM, Fan S (2010) Phys Rev B 81:041101(R)

    Article  Google Scholar 

  26. Manson NB, Harrison JP, Sellars MJ (2006) Phys Rev B 74:104303

    Article  Google Scholar 

  27. Huck A, Kumar S, Shakoor A, Andersen UL (2011) Phys Rev Lett 106:096801

    Article  Google Scholar 

  28. Chen Q, Yang WL, Feng M, Du JF (2011) Phys Rev A 83:054305

    Article  Google Scholar 

  29. Barclay PE, Santori C, Fu KM, Beausoleil RG, Painter O (2009) Opt Express 17:8081–8097

    Article  CAS  Google Scholar 

  30. Park YS, Cook AK, Wang H (2006) Nano Lett 6:2075–2079

    Article  CAS  Google Scholar 

  31. Yang WL, Yin ZQ, Xu ZY, Feng M, Du JF (2010) Appl Phys Lett 96:241113

    Article  Google Scholar 

  32. Tomljenovic-Hanic S, Steel MJ, Martijn de Sterke C, Salzman J (2006) Opt Express 14:3556–3562

    Google Scholar 

  33. Barclay PE, Fu KM, Santori C, Beausoleil RG (2009) Opt Express 17:9588–9601

    Article  CAS  Google Scholar 

  34. Wolters J, Schell AW, Kewes G, Nusse N, Schoengen M, Doscher H, Hannappel T, ochel BL, Barth M, Benson O (2010) Appl Phys Lett 97:141108

    Google Scholar 

  35. Englund D, Shields B, Rivoire K, Hatami F, Vuckovic J, Park H, Lukin MD (2010) Nano Lett 10:3922–3926

    Article  CAS  Google Scholar 

  36. Yang WL, Yin ZQ, Xu ZY, Feng M, Oh CH (2011) Phys Rev A 84:043849

    Article  Google Scholar 

  37. Faraon A, Santori C, Huang Z, Acosta VM, Beausoleil RG (2012) Phys Rev Lett 109:033604

    Article  Google Scholar 

  38. Yang WL, An JH, Zhang C, Feng M, Oh CH (2013) Phys Rev A 87:022312

    Google Scholar 

  39. Ali H, Basit A, Badshah F, Ge G-Q (2018) Physica E 104:261–267

    Article  CAS  Google Scholar 

  40. Abdel-Aty AH, Kadry H, Mohamed ABA et al (2020) Sci Rep 10:16640

    Article  CAS  Google Scholar 

  41. van der Sar T, Hagemeier J, Pfaff W, Heeres EC, Thon SM, Kim H, Petroff PM, Oosterkamp TH, Bouwmeester D, Hanson R (2011) Appl Phys Lett 98:193103

    Article  Google Scholar 

  42. Englund D, Shields B, Rivoire K, Hatami F, Vukovi J, Park H, Lukin MD (2010) Nano Lett 10:39223926

    Article  Google Scholar 

  43. Barth M, Nsse N, Lchel B, Benson O (2009) Opt Lett 34:11081110

    Article  Google Scholar 

  44. Faraon A, Fushman I, Englund D, Stoltz N, Petroff P, Vuckovic J (2008) Opt Express 16:1215412162

    Article  Google Scholar 

  45. Waks E, Vuckovic J (2006) Phys Rev Lett 96:153601

    Article  Google Scholar 

  46. Li J, yu R, Ding C, Wu Y (2014) Opt Express 22(12):15025

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, T., Rath, S., Bhattacherjee, A.B. (2023). Dynamics of Double Nitrogen-Vacancy Centre in a Photonic Crystal Nanocavity: Optical Bistability and Four-Wave Mixing. In: Khan, Z.H., Jackson, M., Salah, N.A. (eds) Recent Advances in Nanotechnology. ICNOC 2022. Springer Proceedings in Materials, vol 28. Springer, Singapore. https://doi.org/10.1007/978-981-99-4685-3_63

Download citation

Publish with us

Policies and ethics