Skip to main content

Graphene and Its Derivatives Based Membranes for Application Towards Desalination

  • Chapter
  • First Online:
Graphene and its Derivatives (Volume 2)

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 134 Accesses

Abstract

This chapter aims to apprise the reader about the advancement in graphene-based membranes towards desalination approaches. Desalination is a crucial technique in alleviating the water shortage crisis that is plaguing many parts of the world currently. Polymeric membranes have been in use till now for desalination in reverse osmosis driven processes. But they suffer from low permeability and low durability, and are also less chemically resistant. Graphene can in many ways overcome these drawbacks, owing to its superior properties, primary among them is its atomic scale thickness. In this Chapter, we will put forward the various ways in which graphene has been utilized in realizing next generation desalination membranes. This chapter will also expound upon the various roadblocks and challenges that need to be addressed before graphene and its derivatives based membranes can well and truly become the staple of the desalination industry. Finally, a summary and outlook of the current state of affairs in graphene-based membranes for desalination is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larsen Tove A et al (2016) Emerging solutions to the water challenges of an urbanizing world. Science 352(6288):928–933. https://doi.org/10.1126/science.aad8641

    Article  CAS  PubMed  Google Scholar 

  2. Chen Z et al (2018) Assimilable organic carbon (AOC) variation in reclaimed water: Insight on biological stability evaluation and control for sustainable water reuse. Bioresour Technol 254:290–299. https://doi.org/10.1016/j.biortech.2018.01.111

    Article  CAS  PubMed  Google Scholar 

  3. Saladini F et al (2018) Linking the water-energy-food nexus and sustainable development indicators for the Mediterranean region. Ecol Indic 91:689–697. https://doi.org/10.1016/j.ecolind.2018.04.035

    Article  Google Scholar 

  4. Chen Z et al (2020) Water eco-nexus cycle system (WaterEcoNet) as a key solution for water shortage and water environment problems in urban areas. Water Cycle 1:71–77. https://doi.org/10.1016/j.watcyc.2020.05.004

    Article  Google Scholar 

  5. A standard for water reuse brings hope for water scarcity (2019) https://www.iso.org/news/ref2377.html. Accessed on 29 Oct 2021

  6. Johnston C (2015) Desalination: the quest to quench the world's thirst for water. https://www.theguardian.com/technology/2015/may/27/desalination-quest-quench-worlds-thirst-water. Accessed on 29 Oct 2021

  7. Desalination: our essential guide to desalination and the global water crisis. (2019). https://www.aquatechtrade.com/news/desalination/desalination-essential-guide/. Accessed on 29 Oct 2021

  8. Eke J et al (2020) The global status of desalination: an assessment of current desalination technologies, plants and capacity. Desalination 495:114633. https://doi.org/10.1016/j.desal.2020.114633

    Article  CAS  Google Scholar 

  9. Semiat R (2008) Energy issues in desalination processes. Environ Sci Technol 42(22):8193–8201. https://doi.org/10.1021/es801330u

    Article  CAS  PubMed  Google Scholar 

  10. Fritzmann C et al (2007) State-of-the-art of reverse osmosis desalination. Desalination 216(1):1–76. https://doi.org/10.1016/j.desal.2006.12.009

    Article  CAS  Google Scholar 

  11. Xu K et al (2016) Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination. ChEnS 146:159–165. https://doi.org/10.1016/j.ces.2016.03.003

    Article  CAS  Google Scholar 

  12. Al-Sahali M, Ettouney H (2007) Developments in thermal desalination processes: design, energy, and costing aspects. Desalination 214(1):227–240. https://doi.org/10.1016/j.desal.2006.08.020

    Article  CAS  Google Scholar 

  13. Konatham D et al (2013) Simulation insights for graphene-based water desalination membranes. Langmuir 29(38):11884–11897. https://doi.org/10.1021/la4018695

    Article  CAS  PubMed  Google Scholar 

  14. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12(7):3602–3608. https://doi.org/10.1021/nl3012853

    Article  CAS  PubMed  Google Scholar 

  15. Mahmoud KA et al (2015) Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 356:208–225. https://doi.org/10.1016/j.desal.2014.10.022

    Article  CAS  Google Scholar 

  16. Boehm H, Setton R, Stumpp E (1986) Nomenclature and terminology of graphite intercalation compounds. Pergamon

    Google Scholar 

  17. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896%JScience

    Article  CAS  PubMed  Google Scholar 

  18. Brodie BC (1859) XIII. On the atomic weight of graphite. Philos Trans R Soc London 149:249–259. https://doi.org/10.1098/rstl.1859.0013

  19. Staudenmaier LJBDDCG (1898) Verfahren zur darstellung der graphitsäure. 31(2):1481–1487

    Google Scholar 

  20. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. 80(6):1339–1339

    Google Scholar 

  21. Geim AK (2012) Graphene prehistory. Phys Scripta T146:014003. https://doi.org/10.1088/0031-8949/2012/t146/014003

  22. Lee XJ et al (2019) Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng 98:163–180. https://doi.org/10.1016/j.jtice.2018.10.028

    Article  CAS  Google Scholar 

  23. Hofmann U, Holst R (1939) Über die Säurenatur und die Methylierung von Graphitoxyd. Berichte der deutschen chemischen Gesellschaft (A and B Series) 72(4):754–771. https://doi.org/10.1002/cber.19390720417

    Article  Google Scholar 

  24. Ruess G (1947) Über das Graphitoxyhydroxyd (Graphitoxyd). Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 76(3):381–417. https://doi.org/10.1007/BF00898987

    Article  CAS  Google Scholar 

  25. Scholz W, Boehm HP (1969) Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids. ZAAC 369(3–6):327–340. https://doi.org/10.1002/zaac.19693690322

  26. Nakajima T, Mabuchi A, Hagiwara R (1988) A new structure model of graphite oxide. Carbon 26(3):357–361. https://doi.org/10.1016/0008-6223(88)90227-8

    Article  CAS  Google Scholar 

  27. He H et al (1996) Solid-state NMR studies of the structure of graphite oxide. J Phys Chem 100(51):19954–19958. https://doi.org/10.1021/jp961563t

    Article  CAS  Google Scholar 

  28. Lerf A et al (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482. https://doi.org/10.1021/jp9731821

    Article  CAS  Google Scholar 

  29. Peng Q, et al (2014) New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. 7:1

    Google Scholar 

  30. Baughman RH, Eckhardt H, Kertesz M (1987) Structure-property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J Chem Phys 87(11):6687–6699. https://doi.org/10.1063/1.453405

    Article  CAS  Google Scholar 

  31. Diederich F (1994) Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369(6477):199–207. https://doi.org/10.1038/369199a0

    Article  CAS  Google Scholar 

  32. Cranford SW, Buehler MJ (2011) Mechanical properties of graphyne. Carbon 49(13):4111–4121. https://doi.org/10.1016/j.carbon.2011.05.024

    Article  CAS  Google Scholar 

  33. Peng Q, Ji W, De S (2012) Mechanical properties of graphyne monolayers: a first-principles study. PCCP 14(38):13385–13391. https://doi.org/10.1039/C2CP42387A

    Article  CAS  PubMed  Google Scholar 

  34. Xue M, Qiu H, Guo W (2013) Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers. Nanotechnology 24(50):505720. https://doi.org/10.1088/0957-4484/24/50/505720

    Article  CAS  PubMed  Google Scholar 

  35. Gao X et al (2019) Graphdiyne: synthesis, properties, and applications. ChSRv 48(3):908–936. https://doi.org/10.1039/C8CS00773J

    Article  CAS  Google Scholar 

  36. Pei Y (2012) Mechanical properties of graphdiyne sheet. Phys B 407(22):4436–4439. https://doi.org/10.1016/j.physb.2012.07.026

    Article  CAS  Google Scholar 

  37. Cranford SW, Buehler MJ (2012) Selective hydrogen purification through graphdiyne under ambient temperature and pressure. Nanoscale 4(15):4587–4593. https://doi.org/10.1039/C2NR30921A

    Article  CAS  PubMed  Google Scholar 

  38. Zhou J et al (2009) Ferromagnetism in semihydrogenated graphene sheet. Nano Lett 9(11):3867–3870. https://doi.org/10.1021/nl9020733

    Article  CAS  PubMed  Google Scholar 

  39. Zhou J, Sun Q (2012) How to fabricate a semihydrogenated graphene sheet? A promising strategy explored. ApPhL 101(7):073114. https://doi.org/10.1063/1.4746756

    Article  CAS  Google Scholar 

  40. Wu M et al (2013) Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. PhRvB 87(8):081406. https://doi.org/10.1103/PhysRevB.87.081406

    Article  CAS  Google Scholar 

  41. Fiori G et al (2010) Simulation of hydrogenated graphene field-effect transistors through a multiscale approach. PhRvB 82(15):153404. https://doi.org/10.1103/PhysRevB.82.153404

    Article  CAS  Google Scholar 

  42. Zhou C et al (2014) Graphene’s cousin: the present and future of graphane. Nanoscale Res Lett 9(1):26. https://doi.org/10.1186/1556-276X-9-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hussain T, De Sarkar A, Ahuja R (2012) Strain induced lithium functionalized graphane as a high capacity hydrogen storage material. ApPhL 101(10):103907. https://doi.org/10.1063/1.4751249

    Article  CAS  Google Scholar 

  44. Tan SM, Sofer Z, Pumera M (2013) Biomarkers detection on hydrogenated graphene surfaces: towards applications of graphane in biosensing. Electroanalysis 25(3):703–705. https://doi.org/10.1002/elan.201200634

    Article  CAS  Google Scholar 

  45. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534. https://doi.org/10.1126/science.1158877

    Article  CAS  PubMed  Google Scholar 

  46. Novoselov KS et al (2012) A roadmap for graphene. Nature 490(7419):192–200. https://doi.org/10.1038/nature11458

    Article  CAS  PubMed  Google Scholar 

  47. Aghigh A et al (2015) Recent advances in utilization of graphene for filtration and desalination of water: a review. Desalination 365:389–397. https://doi.org/10.1016/j.desal.2015.03.024

    Article  CAS  Google Scholar 

  48. You Y et al (2016) Graphene and graphene oxide for desalination. Nanoscale 8(1):117–119. https://doi.org/10.1039/C5NR06154G

    Article  CAS  PubMed  Google Scholar 

  49. Li X, Zhu B, Zhu J (2019) Graphene oxide based materials for desalination. Carbon 146:320–328. https://doi.org/10.1016/j.carbon.2019.02.007

    Article  CAS  Google Scholar 

  50. Safaei S, Tavakoli R (2017) On the design of graphene oxide nanosheets membranes for water desalination. Desalination 422:83–90. https://doi.org/10.1016/j.desal.2017.08.013

    Article  CAS  Google Scholar 

  51. Surwade SP et al (2015) Water desalination using nanoporous single-layer graphene. Nat Nanotechnol 10(5):459–464. https://doi.org/10.1038/nnano.2015.37

    Article  CAS  PubMed  Google Scholar 

  52. Nicolaï A, Sumpter BG, Meunier V (2014) Tunable water desalination across graphene oxide framework membranes. PCCP 16(18):8646–8654. https://doi.org/10.1039/C4CP01051E

    Article  PubMed  Google Scholar 

  53. Han Y, Xu Z, Gao C (2013) Ultrathin graphene nanofiltration membrane for water purification. 23(29):3693–3700. https://doi.org/10.1002/adfm.201202601

  54. Homaeigohar S, Elbahri M (2017) Graphene membranes for water desalination. NPG Asia Materials 9(8):e427–e427. https://doi.org/10.1038/am.2017.135

    Article  CAS  Google Scholar 

  55. Berry V (2013) Impermeability of graphene and its applications. Carbon 62:1–10. https://doi.org/10.1016/j.carbon.2013.05.052

    Article  CAS  Google Scholar 

  56. Wang EN, Karnik R (2012) Graphene cleans up water. Nat Nanotechnol 7(9):552–554. https://doi.org/10.1038/nnano.2012.153

    Article  CAS  PubMed  Google Scholar 

  57. An D et al (2016) Separation performance of graphene oxide membrane in aqueous solution. Ind Eng Chem Res 55(17):4803–4810. https://doi.org/10.1021/acs.iecr.6b00620

    Article  CAS  Google Scholar 

  58. Wang Y et al (2017) Molecular dynamics study on water desalination through functionalized nanoporous graphene. Carbon 116:120–127. https://doi.org/10.1016/j.carbon.2017.01.099

    Article  CAS  Google Scholar 

  59. Khan MH et al (2019) Hydrogen sieving from intrinsic defects of benzene-derived single-layer graphene. Carbon 153:458–466. https://doi.org/10.1016/j.carbon.2019.07.045

    Article  CAS  Google Scholar 

  60. Mishra AK, Ramaprabhu S (2011) Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282:39–45. https://doi.org/10.1016/j.desal.2011.01.038

    Article  CAS  Google Scholar 

  61. Wu W et al (2020) Recent development of graphene oxide based forward osmosis membrane for water treatment: a critical review. Desalination 491:114452. https://doi.org/10.1016/j.desal.2020.114452

    Article  CAS  Google Scholar 

  62. Thomas M, Corry B, Hilder TA (2014) What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation? Small 10(8):1453–1465. https://doi.org/10.1002/smll.201302968

    Article  CAS  PubMed  Google Scholar 

  63. Zhao S, Xue J, Kang W (2013) Ion selection of charge-modified large nanopores in a graphene sheet. J Chem Phys 139(11):114702. https://doi.org/10.1063/1.4821161

    Article  CAS  PubMed  Google Scholar 

  64. Cohen-Tanugi D, Grossman JC (2015) Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination 366:59–70. https://doi.org/10.1016/j.desal.2014.12.046

    Article  CAS  Google Scholar 

  65. Sint K, Wang B, Král P (2008) Selective ion passage through functionalized graphene nanopores. J Am Chem Soc 130(49):16448–16449. https://doi.org/10.1021/ja804409f

    Article  CAS  PubMed  Google Scholar 

  66. Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578. https://doi.org/10.1038/nnano.2010.132

    Article  CAS  PubMed  Google Scholar 

  67. O’Hern SC et al (2012) Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6(11):10130–10138. https://doi.org/10.1021/nn303869m

    Article  CAS  PubMed  Google Scholar 

  68. Wu S et al (2012) Identification of structural defects in graphitic materials by gas-phase anisotropic etching. Nanoscale 4(6):2005–2009. https://doi.org/10.1039/C2NR11707J

    Article  CAS  PubMed  Google Scholar 

  69. Russo CJ, Golovchenko JA (2012) Atom-by-atom nucleation and growth of graphene nanopores. Proc Natl Acad Sci 109(16):5953. https://doi.org/10.1073/pnas.1119827109

    Article  PubMed  PubMed Central  Google Scholar 

  70. O’Hern SC et al (2014) Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett 14(3):1234–1241. https://doi.org/10.1021/nl404118f

    Article  CAS  PubMed  Google Scholar 

  71. O’Hern SC et al (2015) Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett 15(5):3254–3260. https://doi.org/10.1021/acs.nanolett.5b00456

    Article  CAS  PubMed  Google Scholar 

  72. Dikin DA et al (2007) Preparation and characterization of graphene oxide paper. Natur 448(7152):457–460. https://doi.org/10.1038/nature06016

    Article  CAS  Google Scholar 

  73. Dreyer DR et al (2010) The chemistry of graphene oxide. ChSRv 39(1):228–240. https://doi.org/10.1039/B917103G

    Article  CAS  Google Scholar 

  74. Huang L et al (2016) Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration. Adv Mater 28(39):8669–8674. https://doi.org/10.1002/adma.201601606

    Article  CAS  PubMed  Google Scholar 

  75. Joshi RK et al (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343(6172):752–754. https://doi.org/10.1126/science.1245711

    Article  CAS  PubMed  Google Scholar 

  76. Buchsteiner A, Lerf A, Pieper J (2006) Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B 110(45):22328–22338. https://doi.org/10.1021/jp0641132

    Article  CAS  PubMed  Google Scholar 

  77. Nair RR et al (2012) Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335(6067):442–444. https://doi.org/10.1126/science.1211694

    Article  CAS  PubMed  Google Scholar 

  78. Wei N, Lv C, Xu Z (2014) Wetting of graphene oxide: a molecular dynamics study. Langmuir 30(12):3572–3578. https://doi.org/10.1021/la500513x

    Article  CAS  PubMed  Google Scholar 

  79. Sun P et al (2013) Selective ion penetration of graphene oxide membranes. ACS Nano 7(1):428–437. https://doi.org/10.1021/nn304471w

    Article  CAS  PubMed  Google Scholar 

  80. Sun P et al (2014) Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation−π interactions. ACS Nano 8(1):850–859. https://doi.org/10.1021/nn4055682

    Article  CAS  PubMed  Google Scholar 

  81. Perreault F, Fonseca de Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. ChSRv 44(16):5861–5896. https://doi.org/10.1039/C5CS00021A

  82. Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47(8):3715–3723. https://doi.org/10.1021/es400571g

    Article  CAS  PubMed  Google Scholar 

  83. Burress JW et al (2010) Graphene oxide framework materials: theoretical predictions and experimental results. Angew Chem Int Ed 49(47):8902–8904. https://doi.org/10.1002/anie.201003328

    Article  CAS  Google Scholar 

  84. Renteria JD et al (2015) Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv Funct Mater 25(29):4664–4672. https://doi.org/10.1002/adfm.201501429

    Article  CAS  Google Scholar 

  85. Han Y, Xu Z, Gao C (2013) Ultrathin graphene nanofiltration membrane for water purification. Adv Funct Mater 23(29):3693–3700. https://doi.org/10.1002/adfm.201202601

    Article  CAS  Google Scholar 

  86. Le VT et al (2021) Graphene-based nanomaterial for desalination of water: a systematic review and meta-analysis. Food Chem Toxicol 148:111964. https://doi.org/10.1016/j.fct.2020.111964

    Article  CAS  PubMed  Google Scholar 

  87. Castelletto S, Boretti A (2021) Advantages, limitations, and future suggestions in studying graphene-based desalination membranes. RSC Adv 11(14):7981–8002. https://doi.org/10.1039/D1RA00278C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rahardianto A et al (2007) High recovery membrane desalting of low-salinity brackish water: integration of accelerated precipitation softening with membrane RO. J Membr Sci 289(1):123–137. https://doi.org/10.1016/j.memsci.2006.11.043

    Article  CAS  Google Scholar 

  89. Drioli E, Ali A, Macedonio F (2015) Membrane distillation: recent developments and perspectives. Desalination 356:56–84. https://doi.org/10.1016/j.desal.2014.10.028

    Article  CAS  Google Scholar 

  90. Li X et al (2016) Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc Natl Acad Sci 113(49):13953. https://doi.org/10.1073/pnas.1613031113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang L et al (2018) Water desalination under one sun using graphene-based material modified PTFE membrane. Desalination 442:1–7. https://doi.org/10.1016/j.desal.2018.05.006

    Article  CAS  Google Scholar 

  92. Pramanik BK et al (2016) A critical review of membrane crystallization for the purification of water and recovery of minerals. Rev Environ Sci Bio/Technol 15(3):411–439. https://doi.org/10.1007/s11157-016-9403-0

    Article  CAS  Google Scholar 

  93. Perrotta ML et al (2020) Graphene stimulates the nucleation and growth rate of NaCl crystals from hypersaline solution via membrane crystallization. Environ Sci Water Res Technol 6(6):1723–1736. https://doi.org/10.1039/C9EW01124B

    Article  CAS  Google Scholar 

  94. Ramanathan AA, Aqra MW, Al-Rawajfeh AE (2018) Recent advances in 2D nanopores for desalination. Environ Chem Lett 16(4):1217–1231. https://doi.org/10.1007/s10311-018-0745-4

    Article  CAS  Google Scholar 

  95. Zhu C et al (2013) Quantized water transport: ideal desalination through graphyne-4 membrane. Sci Rep 3(1):3163. https://doi.org/10.1038/srep03163

    Article  PubMed  PubMed Central  Google Scholar 

  96. Heiranian M, Farimani AB, Aluru NR (2015) Water desalination with a single-layer MoS2 nanopore. Nat Commun 6(1):8616. https://doi.org/10.1038/ncomms9616

    Article  CAS  PubMed  Google Scholar 

  97. Hilder TA, Gordon D, Chung S-H (2009) Salt rejection and water transport through boron nitride nanotubes. Small 5(19):2183–2190. https://doi.org/10.1002/smll.200900349

    Article  CAS  PubMed  Google Scholar 

  98. Gao H et al (2017) Rational design and strain engineering of nanoporous boron nitride nanosheet membranes for water desalination. J Phys Chem C 121(40):22105–22113. https://doi.org/10.1021/acs.jpcc.7b06480

    Article  CAS  Google Scholar 

  99. Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112(5):1427–1434. https://doi.org/10.1021/jp709845u

    Article  CAS  PubMed  Google Scholar 

  100. Lu Z et al (2019) Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano 13(9):10535–10544. https://doi.org/10.1021/acsnano.9b04612

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabeer Jasuja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakrabarty, S., Rasyotra, A., Thakur, A., Jasuja, K. (2023). Graphene and Its Derivatives Based Membranes for Application Towards Desalination. In: Mohanty, K., Saran, S., Kumara Swamy, B.E., Sharma, S.C. (eds) Graphene and its Derivatives (Volume 2). Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-4382-1_10

Download citation

Publish with us

Policies and ethics