Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 302 Accesses

Abstract

Electrochemical energy devices, such as batteries and fuel cells, are a crucial part of modern energy systems and have numerous applications, including portable electronic devices, electric vehicles, and stationary energy storage systems. In this chapter, we provide an overview of the design and types of these devices, including their principles of operation, key performance parameters, and materials used in construction. We also discuss the challenges and opportunities for improving their performance and sustainability, as well as the potential for integrating them into various energy systems. The materials used in construction and the choice of electrolyte are important design considerations, and researchers have explored a range of options in both areas. Additionally, efforts to increase energy density, power density, and lifetime, as well as reduce environmental impact, are key areas of research in this field. This chapter aims to provide students and researchers with a comprehensive understanding of electrochemical energy devices and their role in modern energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trahey L, Brushett FR, Balsara NP, Ceder G, Cheng L, Chiang YM, Crabtree GW (2020) Energy storage emerging: a perspective from the Joint Center for Energy Storage Research. Proc Natl Acad Sci 117(23):12550–12557

    Article  CAS  Google Scholar 

  2. Kamel AA, Rezk H, Abdelkareem MA (2021) Enhancing the operation of fuel cell-photovoltaic-battery-supercapacitor renewable system through a hybrid energy management strategy. Int J Hydrogen Energy 46(8):6061–6075

    Article  CAS  Google Scholar 

  3. Xing F, Bi Z, Su F, Liu F, Wu ZS (2022) Unraveling the design principles of battery-supercapacitor hybrid devices: from fundamental mechanisms to microstructure engineering and challenging perspectives. Adv Energy Mater 12(26):2200594

    Article  CAS  Google Scholar 

  4. Wilberforce T, Alaswad A, Palumbo A, Dassisti M, Olabi AG (2016) Advances in stationary and portable fuel cell applications. Int J Hydrogen Energy 41(37):16509–16522

    Article  CAS  Google Scholar 

  5. Kennedy KM, Ruggles TH, Rinaldi K, Dowling JA, Duan L, Caldeira K, Lewis NS (2022) The role of concentrated solar power with thermal energy storage in least-cost highly reliable electricity systems fully powered by variable renewable energy. Adv Appl Energy 6:100091

    Article  Google Scholar 

  6. Hannan MA, Lipu MH, Hussain A, Mohamed A (2017) A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew Sustain Energy Rev 78:834–854

    Article  Google Scholar 

  7. Emmett RK, Roberts ME (2021) Recent developments in alternative aqueous redox flow batteries for grid-scale energy storage. J Power Sources 506:230087

    Article  CAS  Google Scholar 

  8. Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Shen ZX (2018) Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 5(1):1700322

    Article  Google Scholar 

  9. Navarro-Suárez AM, Shaffer MS (2022) Designing structural electrochemical energy storage systems: a perspective on the role of device chemistry. Front Chem 9:810781

    Article  Google Scholar 

  10. Li S, Zhang SQ, Shen L, Liu Q, Ma JB, Lv W, Yang QH (2020) Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci 7(5):1903088

    Article  CAS  Google Scholar 

  11. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164

    Article  CAS  Google Scholar 

  12. Phuc NHH, Xian OY, Atsunori M (2020) New developments in hydrogen fuel cells. New Dimens Prod Util Hydrog 273–298

    Google Scholar 

  13. Ram F, Shanmuganathan K (2021) Nanocellulose-based materials and composites for fuel cells. Nanocellulose Based Compos Electron 259–293

    Google Scholar 

  14. Zhao W, Rubio SJB, Dang Y, Suib SL (2022) Green electrochemical energy storage devices based on sustainable manganese dioxides. ACS ES T Eng 2:20–42

    Article  CAS  Google Scholar 

  15. Dhas SD, Maldar PS, Patil MD, Waikar MR, Sonkawade RG, Moholkar AV (2022) Sol-gel synthesized nickel oxide nanostructures on nickel foam and nickel mesh for a targeted energy storage application. J Energy Storage 47:103658

    Article  Google Scholar 

  16. Raccichini R, Varzi A, Passerini S, Scrosati B (2014) The role of graphene for electrochemical energy storage. Nat Mater 14(3):271–279

    Google Scholar 

  17. Pumera M (2011) Graphene -based nanomaterials for energy storage. Energy Environ Sci 4:668–674

    Article  CAS  Google Scholar 

  18. Baumann AE, Burns DA, Liu B, Thoi VS (2019) Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem 21(2):1–14

    Google Scholar 

  19. Zhao Y, Song Z, Li X, Sun Q, Cheng N, Lawes S, Sun X (2016) Metal organic frameworks for energy storage and conversion. Energy Storage Mater 2:35–62

    Article  Google Scholar 

  20. Shahul Hameed A, Nagarathinam M, Schreyer M, Reddy MV, Chowdari BVR, Vittal JJ (2013) A layered oxalatophosphate framework as a cathode material for Li-ion batteries. J Mater Chem A 1:5721–5726

    Google Scholar 

  21. Li X, Cheng F, Zhang S, Chen J (2006) Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2. J Power Sources 160:542–547

    Article  CAS  Google Scholar 

  22. Gou L, Hao LM, Shi YX, Ma SL, Fan XY, Xu L, Li DL, Wang K (2014) One-pot synthesis of a metal–organic framework as an anode for Li-ion batteries with improved capacity and cycling stability. J Solid State Chem 210:121–124

    Article  CAS  Google Scholar 

  23. Gogotsi Y, Anasori B (2019) The rise of MXenes. ACS Nano 13:8491–8494

    Article  CAS  Google Scholar 

  24. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 22(2):1–17

    Google Scholar 

  25. Parsimehr H, Ehsani A (2020) Algae-based electrochemical energy storage devices. Green Chem 22:8062–8096

    Article  CAS  Google Scholar 

  26. Xia L, Yu L, Hu D, Chen GZ (2017) Electrolytes for electrochemical energy storage. Mater Chem Front 1:584–618

    Article  CAS  Google Scholar 

  27. Iqbal MZ, Zakar S, Haider SS (2020) Role of aqueous electrolytes on the performance of electrochemical energy storage device. J Electroanal Chem 858:113793

    Article  CAS  Google Scholar 

  28. Xiang J, Wei Y, Zhong Y, Yang Y, Cheng H, Yuan L, Huang Y (2022) Building practical high‐voltage cathode materials for lithium‐ion batteries. Adv Mater 2200912

    Google Scholar 

  29. Wang H, Chen S, Fu C, Ding Y, Liu G, Cao Y, Chen Z (2021) Recent advances in conversion-type electrode materials for post lithium-ion batteries. ACS Mater Lett 3(7):956–977

    Article  CAS  Google Scholar 

  30. Fan X, Liu B, Liu J, Ding J, Han X, Deng Y, Zhong C (2020) Battery technologies for grid-level large-scale electrical energy storage. Trans Tianjin Univ 26:92–103

    Article  Google Scholar 

  31. Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 7(3):867–884

    Article  CAS  Google Scholar 

  32. Ibrahim OA, Navarro-Segarra M, Sadeghi P, Sabaté N, Esquivel JP, Kjeang E (2022) Microfluidics for electrochemical energy conversion. Chem Rev 122(7):7236–7266

    Article  CAS  Google Scholar 

  33. Alaswad A, Omran A, Sodre JR, Wilberforce T, Pignatelli G, Dassisti M, Olabi AG (2020) Technical and commercial challenges of proton-exchange membrane (PEM) fuel cells. Energies 14(1):144

    Article  Google Scholar 

  34. Aminudin MA, Kamarudin SK, Lim BH, Majilan EH, Masdar MS, Shaari N (2022) An overview: current progress on hydrogen fuel cell vehicles. Int J Hydrogen Energy

    Google Scholar 

  35. O’Hayre RP (2017) Fuel cells for electrochemical energy conversion. In: EPJ Web of conferences, vol 148. EDP Sciences, p 00013

    Google Scholar 

  36. Hassan F, Jamil F, Hussain A, Ali HM, Janjua MM, Khushnood S, Li C (2022) Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: a state of the art review. Sustain Energy Technol Assess 49:101646

    Google Scholar 

  37. Ahmed MS, Choi B, Kim YB (2018) Development of highly active bifunctional electrocatalyst using Co3O4 on carbon nanotubes for oxygen reduction and oxygen evolution. Sci Rep 8(1):2543

    Article  Google Scholar 

  38. Bhatt MD, Lee JY (2020) Advancement of platinum (Pt)-free (non-Pt precious metals) and/or metal-free (non-precious-metals) electrocatalysts in energy applications: a review and perspectives. Energy Fuels 34(6):6634–6695

    Article  CAS  Google Scholar 

  39. Cerdas F, Titscher P, Bognar N, Schmuch R, Winter M, Kwade A, Herrmann C (2018) Exploring the effect of increased energy density on the environmental impacts of traction batteries: a comparison of energy optimized lithium-ion and lithium-sulfur batteries for mobility applications. Energies 11(1):150

    Article  Google Scholar 

  40. Wang C, Yang C, Zheng Z (2022) Toward practical high-energy and high-power lithium battery anodes: present and future. Adv Sci 9(9):2105213

    Article  CAS  Google Scholar 

  41. Gao S, Zhang L, Qiao Y, Dong P, Shi J, Cao S (2016) Electrodeposition of polyaniline on three-dimensional graphene hydrogel as a binder-free supercapacitor electrode with high power and energy densities. RSC Adv 6(64):58854–58861

    Article  CAS  Google Scholar 

  42. Huang Y, Wang L, Guo W, Kang Q, Wu Q (2016) Chance constrained optimization in a home energy management system. IEEE Trans Smart Grid 9(1):252–260

    Article  Google Scholar 

  43. Li J, Adewuyi K, Lotfi N, Landers RG, Park J (2018) A single particle model with chemical/mechanical degradation physics for lithium-ion battery state of health (SOH) estimation. Appl Energy 212:1178–1190

    Article  CAS  Google Scholar 

  44. Kidambi PR, Chaturvedi P, Moehring NK (2021) Subatomic species transport through atomically thin membranes: present and future applications. Science 374(6568):eabd7687

    Google Scholar 

  45. Liu T, Zhang Y, Jiang Z, Zeng X, Ji J, Li Z, Liang C (2019) Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ Sci 12(5):1512–1533

    Article  CAS  Google Scholar 

  46. Olabi AG, Wilberforce T, Sayed ET, Abo-Khalil AG, Maghrabie HM, Elsaid K, Abdelkareem MA (2022) Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission. Energy 254:123987

    Article  Google Scholar 

  47. Tu J, Torrente-Rodríguez RM, Wang M, Gao W (2020) The era of digital health: a review of portable and wearable affinity biosensors. Adv Func Mater 30(29):1906713

    Article  CAS  Google Scholar 

  48. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322

    Article  CAS  Google Scholar 

  49. Aijaz I, Ahmad A (2022) Electric vehicles for environmental sustainability. In: Smart technologies for energy and environmental sustainability, pp 131–145

    Google Scholar 

  50. Wang W, Xie Z, Li K, Yu S, Ding L, Zhang FY (2022) Recent progress in in-situ visualization of electrochemical reactions in electrochemical energy devices. Curr Opin Electrochem 101088

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikhar, S., Awasthi, G., Kumar, P. (2023). Design/Types of Electrochemical Energy Devices. In: Gupta, R.K. (eds) Recent Advancements in Polymeric Materials for Electrochemical Energy Storage. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-4193-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4193-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4192-6

  • Online ISBN: 978-981-99-4193-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics