Skip to main content

Roles of Metastasis Suppressor Gene, OGR1 and Casein Kinase 2\(\alpha\) Intronless Gene, CSNK2A3 in Megakaryocytic Differentiation

  • Conference paper
  • First Online:
Healthcare Research and Related Technologies (NERC 2022)

Included in the following conference series:

  • 135 Accesses

Abstract

Casein Kinase 2 \(\alpha\) (CK2\(\alpha\)) expression is found to be upregulated in various cancers and it is correlated with the sustenance of undifferentiated malignant phenotype and promotion of metastasis. This study aims to investigate the role of OGR1, a metastasis suppressor gene, in regulating the expressions of CK2\(\alpha\) genes; CSNK2A1 and CSNK2A3 (intronless) in K562 cells (Chronic Myelogenous Leukemia cell line) differentiation. When phorbol 12-myristate 13-acetate (PMA) is treated to induce differentiation of K562 cells into megakaryocytic cells, the expression of OGR1 is upregulated whereas the expressions of CSNK2A3 and CSNK2A1 are downregulated. Interestingly, OGR1 overexpression alone can induce differentiation of K562 similar to PMA and also downregulates the expression of CSNK2A3. However, it upregulates the expression of CSNK2A1. The results indicate that the downregulation of CSNK2A3 is necessary or required for K562 differentiation. OGR1 differentially regulates the expressions of CSNK2A3 and CSNK2A1. Activation of G \(\alpha\) i, involvement of monomeric G-proteins, and p38 pathway are seen in the OGR1 regulation of CSNK2A1 and CSNK2A3 expression. Therefore, it can be concluded that OGR1 and CSNK2A3 may be the key regulators of megakaryocytic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K (2005) Targeting CK2 for cancer therapy. Anticancer Drugs 16(10):1037–1043

    Article  Google Scholar 

  2. Ahmed K, Gerber DA, Cochet C (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12(5):226–230

    Article  Google Scholar 

  3. Chua MM, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I (2017) CK2 in cancer: cellular and biochemical mechanisms and potential therapeutic target. Pharmaceuticals 10(1):18

    Google Scholar 

  4. Devilat I, Carvallo P (1993) Structure and sequence of an intronless gene for human casein kinase II-α subunit. FEBS Lett 316(2):114–118

    Google Scholar 

  5. Dominguez I, Sonenshein GE, Seldin DC (2009) Protein kinase CK2 in health and disease. Cell Mol Life Sci 66(11):1850–1857

    Article  Google Scholar 

  6. Gocek E, Marcinkowska E (2011) Differentiation therapy of acute myeloid leukemia. Cancers 3(2):2402–2420

    Article  Google Scholar 

  7. Gowda C, Sachdev M, Muthusami S, Kapadia M, Petrovic-Dovat L, Hartman M et al (2017) Casein kinase II (CK2) as a therapeutic target for hematological malignancies. Curr Pharm Des 23(1):95–107

    Google Scholar 

  8. Guerra B, Issinger OG (2008) Protein kinase CK2 in human diseases. Curr Med Chem 15(19):1870–1886

    Article  Google Scholar 

  9. Guerra B, Issinger OG (1999) Protein kinase CK2 and its role in cellular proliferation, development, and pathology. ELECTROPHORESIS: Int J 20(2):391–408

    Google Scholar 

  10. Hung MS, Lin YC, Mao JH, Kim IJ, Xu Z, Yang CT et al (2010) Functional polymorphism of the CK2a intronless gene plays oncogenic roles in lung cancer

    Google Scholar 

  11. Kang H, Jung JW, Kim MK, Chung JH (2009) CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity, and cellular response to DNA-damage. PLoS ONE 4(8):e6611

    Article  Google Scholar 

  12. Lee SW, Song YS, Lee SY, Yoon YG, Lee SH, Park BS et al (2011) Downregulation of protein kinase CK2 activity facilitates tumor necrosis factor-α-mediated chondrocyte death through apoptosis and autophagy. PloS one 6(4):e19163

    Google Scholar 

  13. Lian H, Su M, Zhu Y, Zhou Y, Soomro SH, Fu H (2019) Protein kinase CK2, a potential therapeutic target in carcinoma management. Asian Pac J Cancer Prev: APJCP 20(1):23

    Article  Google Scholar 

  14. Losa JH, Cobo CP, Viniegra JG, Lobo VJSA, Sanchez-Prieto R (2003) Role of the p38 MAPK pathway in cisplatin-based therapy. Oncogene 22(26):3998-4006

    Google Scholar 

  15. Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U et al (2003) Proton-sensing G-protein-coupled receptors. Nature, 425(6953):93–98

    Google Scholar 

  16. Manni S, Brancalion A, Tubi LQ, Colpo A, Pavan L, Cabrelle A et al (2012) Protein kinase CK2 protects multiple myeloma cells from ER stress–induced apoptosis and from the cytotoxic effect of hsp90 inhibition through regulation of the unfolded protein response. Clin Cancer Res 18(7):1888–1900

    Google Scholar 

  17. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17(3):349–368

    Article  Google Scholar 

  18. Mitrovský O, Myslivcová D, Macháčková-Lopotová T, Obr A, Čermáková K, Ransdorfová Š et al (2021). Inhibition of casein kinase 2 induces cell death in chronic myelogenous leukemia cells with different mechanisms of resistance to tyrosine kinase inhibitors. bioRxiv

    Google Scholar 

  19. Montenarh M (2010) Cellular regulators of protein kinase CK2. Cell Tissue Res 342(2):139–146

    Article  Google Scholar 

  20. Olsen BB, Svenstrup TH, Guerra B (2012) Downregulation of protein kinase CK2 induces autophagic cell death through modulation of the mTOR and MAPK signaling pathways in human glioblastoma cells. Int J Oncol 41(6):1967–1976

    Article  Google Scholar 

  21. Olson JM, Hallahan AR (2004) p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med 10(3):125–129

    Article  Google Scholar 

  22. Ono K, Han J (2000) The p38 signal transduction pathway activation and function. Cell Signal 12(1):1–13

    Article  Google Scholar 

  23. Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G et al (2006) Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 108(5):1698–1707

    Google Scholar 

  24. Sharma AL, Meitei PM, Machathoibi TC, Singh NT, Singh TR, Singh LS (2022) Ovarian cancer G protein-coupled receptor 1 inhibits A549 cells migration through casein kinase 2α intronless gene and neutral endopeptidase. BMC Cancer 22(1):1–12

    Article  Google Scholar 

  25. Singh LS, Kalafatis M (2002) Sequencing of full-length cDNA encoding the α and β subunits of human casein kinase II from human platelets and megakaryocytic cells. Expression of the casein kinase IIα intronless gene in a megakaryocytic cell line. Biochemistry 41(28):8935–8940

    Google Scholar 

  26. Singh LS, Berk M, Oates R, Zhao Z, Tan H, Jiang Y et al (2007) Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. J Natl Cancer Inst 99(17):1313–1327

    Google Scholar 

  27. Trembley JH, Chen Z, Unger G, Slaton J, Kren BT, Van Waes C, Ahmed K (2010) The emergence of protein kinase CK2 as a key target in cancer therapy. BioFactors 36(3):187–195

    Article  Google Scholar 

  28. Wang G, Unger G, Ahmad KA, Slaton JW, Ahmed K (2005) Downregulation of CK2 induces apoptosis in cancer cells–a potential approach to cancer therapy. Mol Cell Biochem 274(1):77–84

    Article  Google Scholar 

  29. Wirkner U, Pyerin W (1999) CK2α loci in the human genome: structure and transcriptional activity. In: A molecular and cellular view of protein kinase CK2, pp 59–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisam Shanjukumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, N.T., Meitei, P.M., Singh, L.S. (2023). Roles of Metastasis Suppressor Gene, OGR1 and Casein Kinase 2\(\alpha\) Intronless Gene, CSNK2A3 in Megakaryocytic Differentiation. In: Pandey, L.M., Gupta, R., Thummer, R.P., Kar, R.K. (eds) Healthcare Research and Related Technologies. NERC 2022. Springer, Singapore. https://doi.org/10.1007/978-981-99-4056-1_3

Download citation

Publish with us

Policies and ethics