Skip to main content

The Potential Application of Entomopathogenic Fungi (EF) in Insect Pest Management

  • Chapter
  • First Online:
Microbial Biocontrol: Molecular Perspective in Plant Disease Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 49))

  • 233 Accesses

Abstract

Biological control based on entomopathogenic fungi (EF) is an environmentally safe and promising substitute for chemical pesticides in agriculture. EF range from extremely pathogenic forms to naturally occurring ones and are often present in the soil, plant rhizosphere, or sometimes as endophytes of plants. By the diverse niches they occupy, biochemistry of the insect cuticle, and enzymes and toxins they release, these EF-based contact bioinsecticides are known to control agricultural pests, mosquitoes, termites, etc. The EF attack the insect and the complexity of attacks and counterattacks depends upon the communication between the attacking EF and the insect host, which leads to a co-evolutionary arms race between the fungus and the insect. It has been well understood that lipids present in the epicuticle are important in the stress and virulence of EF. Further, to generate novel strains of EF with enhanced virulence and improved resistance to stress, genetic engineering is employed. Nowadays, with the percolation of nanotechnology in agriculture, EF-based myconanopesticides can be fabricated. EF are incorporated into formulations and marketed after getting registered as mycoinsecticides, and they can be used either alone or in combination with plant extracts to achieve synergistic pest control.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Raheem M (2020) Isolation, mass production and application of Entomopathogenic Fungi for insect pests control. In: Cottage industry of biocontrol agents and their applications. Springer, Cham, pp 231–251

    Chapter  Google Scholar 

  • Al-Ani LK (2019) Entomopathogenic Fungi in IP landscape. In: Intellectual property issues in microbiology. Springer, Singapore, pp 223–238

    Chapter  Google Scholar 

  • Álvarez SP, Tapia MA, Pérez KI, Guerrero AM (2017) Agriculture applications of entomopathogenic fungi using nanotechnology. In: Fungal Nanotechnology. Springer, Cham, pp 35–53

    Chapter  Google Scholar 

  • Arthur FH, Campbell JF (2008) Distribution and efficacy of pyrethrin aerosol to control Tribolium confusum (Coleoptera: Tenebrionidae) in food storage facilities. J Stored Prod Res 44(1):58–64

    Article  Google Scholar 

  • Athanassiou CG, Rani PU, Kavallieratos NG (2014) The use of plant extracts for stored product protection. InAdvances in plant biopesticides. Springer, New Delhi, pp 131–147

    Google Scholar 

  • Batta YA, Kavallieratos NG (2018) The use of entomopathogenic fungi for the control of stored-grain insects. Int J Pest Manag 64(1):77–87

    Article  Google Scholar 

  • Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336(6088):1576–1577

    Article  PubMed  Google Scholar 

  • Behle R, Birthisel T (2014) Formulations of entomopathogens as bioinsecticides. In: Mass production of beneficial organisms. Academic Press, pp 483–517

    Chapter  Google Scholar 

  • Behle RW, Compton DL, Laszlo JA, Shapiro-Ilan DI (2009) Evaluation of soyscreen in an oil-based formulation for UV protection of Beauveria bassiana conidia. J Econ Entomol 102(5):1759–1766

    Article  PubMed  Google Scholar 

  • Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA (2016) Entomopathogenic fungi: new insights into host–pathogen interactions. In: Advances in genetics, vol 94. Academic Press, pp 307–364

    Google Scholar 

  • Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J (2016) Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev 80(2):329–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandra JH, Raj LA, Namasivayam SKR, Bharani RA (2013) Improved pesticidal activity of fungal metabolite from Nomureae rileyi with chitosan nanoparticles. In: International conference on Advanced Nanomaterials & Emerging Engineering Technologies, pp 387–390

    Google Scholar 

  • Charnley AK (2003) Fungal pathogens of insects: cuticle degrading enzymes and toxins. Adv Bot Res 40:241–232

    Article  Google Scholar 

  • Cheraghi A, Habibpour B, Mossadegh MS (2013) Application of bait treated with the entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin for the control of Microcerotermes diversus Silv. Psyche 2013:1

    Article  Google Scholar 

  • Chu ZJ, Wang YJ, Ying SH, Wang XW, Feng MG (2016) Genome-wide host-pathogen interaction unveiled by transcriptomic response of diamondback moth to fungal infection. PLoS One 11(4):e0152908

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarkson JM, Charnley AK (1996) New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol 4(5):197–203

    Article  PubMed  Google Scholar 

  • da Silva RA, Quintela ED, Mascarin GM, Pedrini N, Lião LM, Ferri PH (2015) Unveiling chemical defense in the rice stalk stink bug against the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 127:93–100

    Article  PubMed  Google Scholar 

  • Dara SK (2019) Interactions of entomopathogens with other pest management options. In: Microbes for sustainable insect pest management. Springer, Cham, pp 299–316

    Chapter  Google Scholar 

  • de Bekker C, Smith PB, Patterson AD, Hughes DP (2013) Metabolomics reveals the heterogeneous secretome of two entomopathogenic fungi to ex vivo cultured insect tissues. PLoS One 8(8):e70609

    Article  PubMed  PubMed Central  Google Scholar 

  • Driver F, Milner RJ, Trueman JW (2000) A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycol Res 104(2):134–150

    Article  Google Scholar 

  • Dubovskiy IM (2021) Host–pathogen interactions: insects vs. fungi. J Fungi 7:162

    Article  Google Scholar 

  • Dubovskiy IM, Whitten MA, Kryukov VY, Yaroslavtseva ON, Grizanova EV, Greig C, Mukherjee K, Vilcinskas A, Mitkovets PV, Glupov VV, Butt TM (2013) More than a colour change: insect melanism, disease resistance and fecundity. Proc Royal Soc B Biol Sci 280(1763):20130584

    Article  Google Scholar 

  • Edde PA (2012) A review of the biology and control of Rhyzopertha dominica (F.) the lesser grain borer. J Stored Prod Res 48:1–18

    Article  Google Scholar 

  • Erler F, Ates AO (2015) Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. J Insect Sci 15(1):44

    Article  PubMed  PubMed Central  Google Scholar 

  • Evison SE, Gallagher JD, Thompson JJ, Siva-Jothy MT, Armitage SA (2017) Cuticular colour reflects underlying architecture and is affected by a limiting resource. J Insect Physiol 98:7–13

    Article  PubMed  Google Scholar 

  • Fan Y, Fang W, Guo S, Pei X, Zhang Y, Xiao Y, Li D, Jin K, Bidochka MJ, Pei Y (2007) Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl Env Microbiol 73(1):295–302

    Article  Google Scholar 

  • Fan Y, Borovsky D, Hawkings C, Ortiz-Urquiza A, Keyhani NO (2012) Exploiting host molecules to augment mycoinsecticide virulence. Nat Biotechnol 30(1):35

    Article  PubMed  Google Scholar 

  • Fang W, St. Leger RJ (2012) Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi. PLoS One 7:e43069

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang W, Leng B, Xiao Y, Jin K, Ma J, Fan Y, Feng J, Yang X, Zhang Y, Pei Y (2005) Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 71(1):363–370

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang W, Feng J, Fan Y, Zhang Y, Bidochka MJ, Leger RJS, Pei Y (2009) Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J Invert Pathol 102(2):155–159

    Article  Google Scholar 

  • Fernández-Grandon GM, Harte SJ, Ewany J, Bray D, Stevenson PC (2020) Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plan Theory 9(2):173

    Google Scholar 

  • Freimoser FM, Screen S, Bagga S, Hu G, St Leger RJ (2003a) Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149:239–247

    Article  PubMed  Google Scholar 

  • Freimoser FM, Screen S, Hu G, Leger RS (2003b) EST analysis of genes expressed by the zygomycete pathogen Conidiobolus coronatus during growth on insect cuticle. Microbiology 149:1893–1900

    Article  PubMed  Google Scholar 

  • Gade AK, Bonde PP, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobaased Mater Bioenergy 2(3):243–247

    Article  Google Scholar 

  • Gibson DM, Donzelli BG, Krasnoff SB, Keyhani NO (2014) Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat Prod Rep 31(10):1287–1305

    Article  PubMed  Google Scholar 

  • Gillespie JP, Burnett C, Charnley AK (2000) The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus, Metarhizium anisopliae var acridum. J Insect Physiol 46(4):429–437

    Article  PubMed  Google Scholar 

  • Golebiowski M, Cerkowniak M, Urbanek A, Dawgul M, Kamysz W, Bogus MI, Sosnowska D, Stepnowski P (2014a) Antimicrobial activity of untypical lipid compounds in the cuticular and internal 584 lipids of four fly species. J Appl Microbiol 116:269–287

    Article  PubMed  Google Scholar 

  • Golebiowski M, Urbanek A, Oleszczak A, Dawgul M, Kamysz W, Bogus MI, Stepnowski P (2014b) The antifungal activity of fatty acids of all stages of Sarcophaga carnaria L. (Diptera: Sarcophagidae). Microbiol Res 169:279–286

    Article  PubMed  Google Scholar 

  • Golebiowski M, Cerkowniak M, Urbanek A, Dawgul M, Kamysz W, Bogus MI, Stepnowski P (2015) Identification and antifungal activity of novel organic compounds found in cuticular and internal lipids of medically important flies. Microbiol Res 170:213–222

    Article  PubMed  Google Scholar 

  • Gongora B (2004) Transformacion de Beauveria bassiana cepa Bb9112 con los genes de la proteina verde fluorescente y la proteasa pr1A de Metarhizium anisopliae. Sociedad Botanica de Entomologia. Bogota (Colombia) 30:1–5

    Google Scholar 

  • Gudikandula K, Vadapally P, Charya MS (2017) Biogenic synthesis of silver nanoparticles from white rot fungi: their characterization and antibacterial studies. OpenNano 2:64–78

    Article  Google Scholar 

  • Guilger-Casagrande M, de Lima R (2019) Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol 7:287

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta RK, Kumar V, Gundampati RK, Malviya M, Hasan SH, Jagannadham MV (2017) Biosynthesis of silver nanoparticles from the novel strain of Streptomyces Sp. BHUMBU-80 with highly efficient electroanalytical detection of hydrogen peroxide and antibacterial activity. J Environ Chem Eng 5(6):5624–5635

    Article  Google Scholar 

  • Herker M, Kleefeldt U, Stephan D (2010) Laboratory experiments with entomopathogenic fungi on artificial hideouts for biocontrol of Cydia pomonella and Cydia funebrana. In: Ecofruit. 14th international conference on organic fruit-growing. Proceedings for the conference, Hohenheim, Germany. Fördergemeinschaft Ökologischer Obstbau eV (FÖKO), pp 149–155

    Google Scholar 

  • Hernandez-Trejo A, Estrada-Drouaillet B, López-Santillán JA, Rios-Velasco C, Varela-Fuentes SE, Rodríguez-Herrera R, Osorio-Hernández E (2019) In vitro evaluation of native entomopathogenic fungi and neem (Azadiractha indica) extracts on Spodoptera frugiperda. Phyton 88(1):47

    Article  Google Scholar 

  • Huarte-Bonnet C, Kumar S, Saparrat MC, Girotti JR, Santana M, Hallsworth JE, Pedrini N (2018) Insights into hydrocarbon assimilation by eurotialean and hypocrealean fungi: roles for CYP52 and CYP53 clans of cytochrome P450 genes. Appl Biochem Biotechnol 184(3):1047–1060

    Article  PubMed  Google Scholar 

  • Huarte-Bonnet C, Mannino MC, Pedrini N (2019) Oxidative stress in Entomopathogenic fungi and its potential role on Mycoinsecticide enhancement. In: Microbes for sustainable insect pest management. Springer, Cham, pp 197–205

    Google Scholar 

  • Hussain A (2018) Reprogramming the virulence: insect defense molecules navigating the epigenetic landscape of Metarhizium robertsii. Virulence 9(1):447–449

    Article  PubMed  PubMed Central  Google Scholar 

  • Hynes RK, Boyetchko SM (2006) Research initiatives in the art and science of biopesticide formulations. Soil Biol Biochem 38(4):845–849

    Article  Google Scholar 

  • Jaber LR, Ownley BH (2018) Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control 116:36–45

    Article  Google Scholar 

  • Keyhani NO (2018) Lipid biology in fungal stress and virulence: entomopathogenic fungi. Fungal Biol 122(6):420–429

    Article  PubMed  Google Scholar 

  • Khooshe-Bast Z, Sahebzadeh N, Ghaffari-Moghaddam M, Mirshekar A (2016) Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856)(Hemiptera: Aleyrodidae). Acta Agric Slovenica 107(2):299–309

    Article  Google Scholar 

  • Kim JS, Je YH, Woo EO, Park JS (2011) Persistence of Isaria fumosorosea (Hypocreales: Cordycipitaceae) SFP-198 conidia in corn oil based suspension. Mycopathologia 171:67–75

    Article  PubMed  Google Scholar 

  • Kim JS, Je YH, Skinner M, Parker BL (2013) An oil-based formulation of Isaria fumosorosea blastospores for management of greenhouse whitefly Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Pest Manag Sci 69(5):576–581

    Article  PubMed  Google Scholar 

  • Kumar A (2022) Microbial biocontrol: food security and post harvest management, vol 2. Springer Nature, Switzerland

    Book  Google Scholar 

  • Lee SJ, Kim S, Skinner M, Parker BL, Kim JS (2016) Screen bag formulation of Beauveria and Metarhizium granules to manage Riptortus pedestris (Hemiptera: Alydidae). J Asia-Pacific Entomol 19(3):887–892

    Article  Google Scholar 

  • Liao X, Lu HL, Fang W, Leger RJS (2014) Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil. Appl Microbiol Biotechnol 98(2):777–783

    Article  PubMed  Google Scholar 

  • Litwin A, Nowak M, Różalska S (2020) Entomopathogenic fungi: unconventional applications. Rev Environ Sci Biotechnol 19:1–20

    Article  Google Scholar 

  • Liu H, Xie L, Wang J, Guo Q, Yang S, Liang P, Wang C, Lin M, Xu Y, Zhang L (2017) The stress-responsive and host-oriented role of nonribosomal peptide synthetases in an entomopathogenic fungus, Beauveria bassiana. J Microbiol Biotechnol 27(3):439–449

    Article  PubMed  Google Scholar 

  • Loo YY, Rukayadi Y, Nor-Khaizura MAR, Kuan CH, Chieng BW, Nishibuchi M, Radu S (2018) In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol 9:1555

    Article  PubMed  PubMed Central  Google Scholar 

  • Lord JC (2010) Dietary stress increases the susceptibility of Tribolium castaneum to Beauveria bassiana. J Econ Entomol 103:1542–1546

    Article  PubMed  Google Scholar 

  • Maina UM, Galadima IB, Gambo FM, Zakaria D (2018) A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J Entomol Zool Stud 6(1):27–32

    Google Scholar 

  • Mantilla JG, Galeano NF, Gaitan AL, Cristancho MA, Keyhani NO, Gongora CE (2012) Transcriptome analysis of the entomopathogenic fungus Beauveria bassiana grown on cuticular extracts of the coffee berry borer (Hypothenemus hampei). Microbiology 158:1826–1842

    Article  PubMed  Google Scholar 

  • Mantzoukas S, Eliopoulos PA (2020) Endophytic entomopathogenic fungi: a valuable biological control tool against plant pests. Appl Sci 10(1):360

    Article  Google Scholar 

  • Mantzoukas S, Lagogiannis I, Karmakolia K, Rodi A, Gazepi M, Eliopoulos PA (2020) The effect of grain type on virulence of Entomopathogenic fungi against stored product pests. Appl Sci 10(8):2970

    Article  Google Scholar 

  • Mascarin GM, Lopes RB, Delalibera Í Jr, Fernandes ÉKK, Luz C, Faria M (2019) Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J Invertebr Pathol 165:46–53

    Article  PubMed  Google Scholar 

  • Mingotti Dias P, de Souza LE, Amorim Pessoa LG, Reis Devoz GL, Bárbaro Barbosa Junior G, Macali Werner A, Navarrete AA, Teodoro PE (2020) Selectivity of entomopathogenic fungi to Chrysoperla externa (Neuroptera: Chrysopidae). Insects 11(10):716

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee K, Vilcinskas A (2018) The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection. Virulence 9(1):402–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagamoto NS (2012) Carrying and effect of granulated baits formulated with entomopathogenic fungi among Atta sexdens rubropilosa colonies (Hymenoptera: Formicidae). Sociobiology 59(3):681–689

    Article  Google Scholar 

  • Netala VR, Bethu MS, Pushpalatha B, Baki VB, Aishwarya S, Rao JV, Tartte V (2016) Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int J Nanomedicine 11:5683

    Article  PubMed  PubMed Central  Google Scholar 

  • Nian XG, He YR, Lu LH, Zhao R (2015) Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations–oil-based formulation and wettable powder–combined with Bacillus thuringiensis. Pest Manag Sci 71(12):1675–1684

    Article  PubMed  Google Scholar 

  • Opisa S, Du Plessis H, Akutse KS, Fiaboe KKM, Ekesi S (2018) Effects of Entomopathogenic fungi and Bacillus thuringiensis-based biopesticides on Spoladea recurvalis (Lepidoptera: Crambidae). J Appl Entomol 142(6):617–626

    Article  Google Scholar 

  • Oppert B, Guedes RN, Aikins MJ, Perkin L, Chen Z, Phillips TW, Zhu KY, Opit GP, Hoon K, Sun Y, Meredith G (2015) Genes related to mitochondrial functions are differentially expressed in phosphine-resistant and -susceptible Tribolium castaneum. BMC Genomics 16:968

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Urquiza A, Keyhani NO (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4:357–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Panpatte DG, Jhala YK (eds) (2019) Nanotechnology for agriculture: crop production & protection. Springer Nature

    Google Scholar 

  • Pava-Ripoll M, Posada FJ, Momen B, Wang C, Leger RS (2008) Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae) by Metarhizium anisopliae expressing the scorpion toxin (AaIT) gene. J Invertebr Pathol 99(2):220–226

    Article  PubMed  Google Scholar 

  • Pedrini N (2018) Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biol 122(6):538–545

    Article  PubMed  Google Scholar 

  • Pedrini N, Juárez MP (2008) Entomopathogenic fungi and their host cuticle. In: Encyclopedia of entomology, 2nd ed. Springer-Verlag, Heidelberg, pp 1333–1336

    Google Scholar 

  • Pedrini N, Crespo R, Juárez MP (2007) Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comp Biochem Physiol Part C Toxicol Pharmacol 146(1–2):124–137

    Article  Google Scholar 

  • Pedrini N, Ortiz-Urquiza A, Huarte-Bonnet C, Fan Y, Juárez MP, Keyhani NO (2015) Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen. Proc Nat Acad Sci 112(28):E3651–E3660

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng G, Jin K, Liu Y, Xia Y (2015) Enhancing the utilization of host trehalose by fungal trehalase improves the virulence of fungal insecticide. Appl Microbiol Biotechnol 99(20):8611–8618

    Article  PubMed  Google Scholar 

  • Phillips TW, Throne JE (2010) Biorational approaches to managing stored-product insects. Annu Rev Entomol 55:375–397

    Article  PubMed  Google Scholar 

  • Qasim M, Islam SU, Islam W, Noman A, Khan KA, Hafeez M, Hussain D, Dash CK, Bamisile BS, Akutse KS, Rizwan M (2020) Characterization of mycotoxins from entomopathogenic fungi (Cordyceps fumosorosea) and their toxic effects to the development of asian citrus psyllid reared on healthy and diseased citrus plants. Toxicon 188:39–47

    Article  PubMed  Google Scholar 

  • Qin Y, Ying SH, Chen Y, Shen ZC, Feng MG (2010) Integration of insecticidal protein Vip3Aa1 into Beauveria bassiana enhances fungal virulence to Spodoptera litura larvae by cuticle and per os infection. Appl Environ Microbiol 76(14):4611–4618

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramanujam B, Prasad RD, Sriram S, Rangeswaran R (2010) Mass production, formulation, quality control and delivery of Trichoderma for plant disease management. J Plant Prot Sci 2(2):1–8

    Google Scholar 

  • Rao M, Jha B, Jha AK, Prasad K (2017) Fungal nanotechnology: a pandora to agricultural science and engineering. In: Fungal nanotechnology. Springer, Cham, pp 1–33

    Google Scholar 

  • Rath AC (2000) The use of entomopathogenic fungi for control of termites. Biocontrol Sci Tech 10:563–581

    Article  Google Scholar 

  • Reineke A, Bischoff-Schaefer M, Rondot Y, Galidevara S, Hirsch J, Devi KU (2014) Microsatellite markers to monitor a commercialized isolate of the entomopathogenic fungus Beauveria bassiana in different environments: technical validation and first applications. Biol Control 70:1–8

    Article  Google Scholar 

  • Rodrigues J, Borges PR, Fernandes ÉKK, Luz C (2019) Activity of additives and their effect in formulations of Metarhizium anisopliae sl IP 46 against Aedes aegypti adults and on post mortem conidiogenesis. Acta Trop 193:192–198

    Article  PubMed  Google Scholar 

  • Rodriguez-Gomez D, Garate-Velez L, Morales-Piña AL, Gutiérrez-Rojas M, Velasco-Alvarez N (2020) Increase in the mortality of the entomopathogenic fungus Metarhizium anisopliae due to the application of an electric field during conidiation. Rev Mex de Ing Quím 19:123–133

    Article  Google Scholar 

  • Rohlfs M, Churchill AC (2011) Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet Biol 48(1):23–34

    Article  PubMed  Google Scholar 

  • Rossi E, Cosimi S, Loni A (2010) Insecticide resistance in Italian populations of Tribolium flour beetles. Bull Insectol 63:251–258

    Google Scholar 

  • Russo ML, Jaber LR, Scorsetti AC, Vianna F, Cabello MN, Pelizza SA (2021) Effect of entomopathogenic fungi introduced as corn endophytes on the development, reproduction, and food preference of the invasive fall armyworm Spodoptera frugiperda. J Pest Sci 94(3):859–870

    Article  Google Scholar 

  • Sánchez-Peña SR, Lara JSJ, Medina RF (2011) Occurrence of entomopathogenic fungi from agricultural and natural ecosystems in Saltillo, Mexico, and their virulence towards thrips and whiteflies. J Insect Sci 11(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Sani I, Ismail SI, Abdullah S, Jalinas J, Jamian S, Saad N (2020) A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects 11(9):619

    Article  PubMed  PubMed Central  Google Scholar 

  • Santi L, da Silva WOB, Berger M, Guimaraes JA, Schrank A, Vainstein MH (2010) Conidial surface 744 proteins of Metarhizium anisopliae: source of activities related with toxic effects, host penetration and pathogenesis. Toxicon 55:874–880

    Article  PubMed  Google Scholar 

  • Santos TS, Passos EMD, Seabra MG, Souto EB, Severino P, Mendonça MDC (2021) Entomopathogenic fungi biomass production and extracellular biosynthesis of silver nanoparticles for bioinsecticide action. Appl Sci 11(6):2465

    Article  Google Scholar 

  • Shang Y, Duan Z, Huang W, Gao Q, Wang C (2012) Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene. J Invertebr Pathol 109(1):105–109

    Article  PubMed  Google Scholar 

  • Sharma A, Jaronski S, Reddy GV (2020) Impact of granular carriers to improve the efficacy of entomopathogenic fungi against wireworms in spring wheat. J Pest Sci 93(1):275–290

    Article  Google Scholar 

  • Sindhu SS, Rakshiya YS, Verna MK (2011) Biological control of termites by antagonistic soil microorganisms. In: Singh A, Parmar N, Kuhad RC (eds) Bioaugmentation, biostimulation and biocontrol. Springer, Berlin, pp 261–309

    Chapter  Google Scholar 

  • Skinner M, Gouli S, Frank CE, Parker BL, Kim JS (2012) Management of Frankliniella occidentalis (Thysanoptera: Thripidae) with granular formulations of entomopathogenic fungi. Biol Control 63(3):246–252

    Article  Google Scholar 

  • Skinner M, Parker BL, Kim JS (2014) Role of entomopathogenic fungi in integrated pest management. In: Integrated pest management. Academic Press, pp 169–191

    Google Scholar 

  • Skrobek A, Shah FA, Butt TM (2008) Destruxin production by the entomogenous fungus Metarhizium anisopliae in insects and factors influencing their degradation. BioControl 53(2):361–373

    Article  Google Scholar 

  • St. Leger RJ, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide over-expressing a toxic protease. Proc. Natl. Acad. Sci. USA 93:6349–6354

    Article  PubMed  PubMed Central  Google Scholar 

  • Süssmuth R, Müller J, Von Döhren H, Molnár I (2011) Fungal cyclooligomer depsipeptides: from classical biochemistry to combinatorial biosynthesis. Nat Prod Rep 28(1):99–124

    Article  PubMed  Google Scholar 

  • Trienens M, Rohlfs M (2012) Insect–fungus interference competition–the potential role of global secondary metabolite regulation, pathway-specific mycotoxin expression and formation of oxylipins. Fungal Ecol 5(2):191–199

    Article  Google Scholar 

  • Tseng MN, Chung PC, Tzean SS (2011) Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. Appl Env Microbiol 77(13):4508–4519

    Article  Google Scholar 

  • Vandergheynst J, Scher H, Guo HY, Schultz D (2007) Water-in-oil emulsions that improve the storage and delivery of the biolarvacide Lagenidium giganteum. BioControl 52(2):207–229

    Article  Google Scholar 

  • Vilcinskas A (2010) Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects. Virulence 1(3):206–214

    Article  PubMed  Google Scholar 

  • Wang C, St Leger RJ (2007a) A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol 25(12):1455–1456

    Article  PubMed  Google Scholar 

  • Wang C, St Leger RJ (2007b) The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 6(5):808–816

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Wang S (2017) Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu Rev Entomol 62:73–90

    Article  PubMed  Google Scholar 

  • Wang JB, Leger RS, Wang C (2016) Advances in genomics of entomopathogenic fungi. Adv Gen 94:67–105

    Article  Google Scholar 

  • Wekesa VW (2004) Evaluation of pathogenic fungi Beauveria bassiana and Metarhizium anisopliae for the control of tobacco spider mite, Tetranychus evansi Baker & Pritchard (Acarina: Tetranychidae) infesting tomatoes. Doctoral dissertation, Jomo Kenyatta University of Agriculture and Technology

    Google Scholar 

  • Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10(9):618–630

    Article  PubMed  Google Scholar 

  • Williams SC, Stafford KC III, Molaei G, Linske MA (2018) Integrated control of nymphal Ixodes scapularis: effectiveness of white-tailed deer reduction, the entomopathogenic fungus Metarhizium anisopliae, and fipronil-based rodent bait boxes. Vector-Borne Zoonotic Dis 18(1):55–64

    Article  PubMed  Google Scholar 

  • Wraight SP, Carruthers RI, Jaronski ST, Bradley CA, Garza CJ, Galaini-Wraight S (2000) Evaluation of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silverleaf whitefly, Bemisia argentifolii. Biol Control 17(3):203–217

    Article  Google Scholar 

  • Xie M, Zhang YJ, Zhai XM, Zhao JJ, Peng DL, Wu G (2015) Expression of a scorpion toxin gene BmKit enhances the virulence of Lecanicillium lecanii against aphids. J Pest Sci 88(3):637–644

    Article  Google Scholar 

  • Xu YJ, Luo F, Li B, Shang Y, Wang C (2016) Metabolic conservation and diversification of Metarhizium species correlate with fungal host-specificity. Front Microbiol 7:2020

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhang K, Cuthbertson AG, Du C, Ali S (2020) Toxicity and biological effects of Beauveria brongniartii Fe0 nanoparticles against Spodoptera litura (Fabricius). Insects 11(12):895

    Article  PubMed  PubMed Central  Google Scholar 

  • Yahyaei B, Pourali P (2019) One step conjugation of some chemotherapeutic drugs to the biologically produced gold nanoparticles and assessment of their anticancer effects. Sci Rep 9(1):1–15

    Article  Google Scholar 

  • Yassine H, Kamareddine L, Osta MA (2012) The mosquito melanization response is implicated in defense against the entomopathogenic fungus Beauveria bassiana. PLoS Pathog 8:e1003029

    Article  PubMed  PubMed Central  Google Scholar 

  • Yosri M, Abdel-Aziz MM, Sayed RM (2018) Larvicidal potential of irradiated myco-insecticide from Metarhizium anisopliae and larvicidal synergistic effect with its mycosynthesized titanium nanoparticles (TiNPs). J Radiat Res Appl Sci 11(4):328–334

    Google Scholar 

  • Yousef M, Aranda-Valera E, Quesada-Moraga E (2018) Lure-and-infect and lure-and-kill devices based on Metarhizium brunneum for spotted wing Drosophila control. J Pest Sci 91(1):227–235

    Article  Google Scholar 

  • Zhang S, Widemann E, Bernard G, Lesot A, Pinot F, Pedrini N, Keyhani NO (2012) CYP52X1, representing the new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in the entomopathogenic fungus Beauveria bassiana. J Biol Chem 287(16):13477–13486

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Lu AR, Kong LL, Zhang QL, Ling EJ (2014) Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis. J Biol Chem 289:35891–35906

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Lei Z, Reitz SR, Wu S, Gao Y (2019) Laboratory and greenhouse evaluation of a granular formulation of Beauveria bassiana for control of western flower thrips, Frankliniella occidentalis. Insects 10(2):58

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Xu C, Lu HL, Chen X, Leger RJS, Fang W (2014) Host-to-pathogen gene transfer facilitated infection of insects by a pathogenic fungus. PLoS Pathog 10(4):e1004009

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Lovett B, Fang W (2016) Genetically engineering entomopathogenic fungi. In: Advances in genetics, vol 94. Academic Press, pp 137–163

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the University Department of Botany, T.M. Bhagalpur University, for providing the necessary infrastructure to carry out the study.

Funding: This study received no grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

No conflict of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, M. (2023). The Potential Application of Entomopathogenic Fungi (EF) in Insect Pest Management. In: Bastas, K.K., Kumar, A., Sivakumar, U. (eds) Microbial Biocontrol: Molecular Perspective in Plant Disease Management. Microorganisms for Sustainability, vol 49. Springer, Singapore. https://doi.org/10.1007/978-981-99-3947-3_16

Download citation

Publish with us

Policies and ethics