Skip to main content

Applications of Upconversion Nanoparticles in Bio-Imaging

  • Chapter
  • First Online:
Upconversion Nanoparticles (UCNPs) for Functional Applications

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 24))

  • 323 Accesses

Abstract

The last decade has seen rapid advancement in upconversion nanoparticles (UCNPs) for biomedical applications because of their unique characteristics. Technological improvements that have been made for conjugating polymers and dyes, to surface nanoparticles (NPs) have improved their dynamic potential in different domains of the biomedical field. The key advantages of UCNPs, such as their lack of photobleaching, photoblinking, and autofluorescence, not only allow us to build precise, responsive, and multimodal nanoprobes, but also improve therapeutic and diagnostic outcomes. This chapter highlights the unique qualities possessed by the UCNPs and the related processes. Among the diverse applications of UCNPs, including neuromodulation, immunotherapy, drug delivery, photothermal treatments, biosensing, and bioimaging, the main focus of this chapter is bioimaging. Finally, the chapter concludes by providing thoughts on the future prospects and obstacles in the bioimaging domain of UCNP-based nanotechnology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.B. Chinen, C.M. Guan, J.R. Ferrer, S.N. Barnaby, T.J. Merkel, C.A. Mirkin, Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 115, 10530–10574 (2015). https://doi.org/10.1021/ACS.CHEMREV.5B00321/ASSET/IMAGES/ACS.CHEMREV.5B00321.SOCIAL.JPEG_V03

    Article  Google Scholar 

  2. O.S. Wolfbeis, An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44, 4743–4768 (2015). https://doi.org/10.1039/C4CS00392F

    Article  Google Scholar 

  3. C. Drees, A.N. Raj, R. Kurre, K.B. Busch, M. Haase, J. Piehler, Engineered upconversion nanoparticles for resolving protein interactions inside living cells. Angew. Chem. Int. Ed. 55, 11668–11672 (2016). https://doi.org/10.1002/ANIE.201603028

    Article  Google Scholar 

  4. L.C. Ong, L.Y. Ang, S. Alonso, Y. Zhang, Bacterial imaging with photostable upconversion fluorescent nanoparticles. Biomaterials 35, 2987–2998 (2014). https://doi.org/10.1016/J.BIOMATERIALS.2013.12.060

    Article  Google Scholar 

  5. M. Schäferling, Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 8, 378–413 (2016). https://doi.org/10.1002/WNAN.1366

    Article  Google Scholar 

  6. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 80(307), 538–544 (2005). https://doi.org/10.1126/SCIENCE.1104274/SUPPL_FILE/MICHALET.SOM.PDF

    Article  Google Scholar 

  7. M.K. Mahata, R. De, K.T. Lee, Near-infrared-triggered upconverting nanoparticles for biomedicine applications. Biomedicines 9, 756 (2021). https://doi.org/10.3390/biomedicines9070756

    Article  Google Scholar 

  8. Y. Zhang, X. Zhu, Y. Zhang, Exploring heterostructured upconversion nanoparticles: from rational engineering to diverse applications. ACS Nano 15, 3709–3735 (2021). https://doi.org/10.1021/acsnano.0c09231

    Article  Google Scholar 

  9. F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2003). https://doi.org/10.1021/CR020357G

    Article  Google Scholar 

  10. Z. Li, Y. Zhang, S. Jiang, Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765–4769 (2008). https://doi.org/10.1002/ADMA.200801056

    Article  Google Scholar 

  11. X. Qin, X. Liu, W. Huang, M. Bettinelli, X. Liu, Lanthanide-activated phosphors based on 4f–5d optical transitions: theoretical and experimental aspects. Chem. Rev. 117, 4488–4527 (2017). https://doi.org/10.1021/acs.chemrev.6b00691

    Article  Google Scholar 

  12. M.K.G. Jayakumar, N.M. Idris, Y. Zhang, Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Natl. Acad. Sci. USA 109, 8483–8488 (2012). https://doi.org/10.1073/PNAS.1114551109

    Article  Google Scholar 

  13. A.M. Smith, M.C. Mancini, S. Nie, Second window for in vivo imaging. Nat. Nanotechnol. 411(4), 710–711 (2009). https://doi.org/10.1038/nnano.2009.326

  14. B. Gu, Q. Zhang, Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Adv. Sci. 5, 1700609 (2018). https://doi.org/10.1002/ADVS.201700609

    Article  Google Scholar 

  15. J. Li, H. Duan, K. Pu, J. Li, H. Duan, K. Pu, Nanotransducers for near-infrared photoregulation in biomedicine. Adv. Mater. 31, 1901607 (2019). https://doi.org/10.1002/ADMA.201901607

    Article  Google Scholar 

  16. L. Liu, R. Hua, B. Chen, X. Qi, W. Zhang, X. Zhang, Z. Liu, T. Ding, S. Yang, T. Zhang, L. Cheng, Detection of nitroaromatics in aqueous media based on luminescence resonance energy transfer using upconversion nanoparticles as energy donors. Nanotechnology 30, 375703 (2019). https://doi.org/10.1088/1361-6528/AB26DD

    Article  Google Scholar 

  17. H. Chen, K. He, H. Li, Y. Zhang, S. Yao, Analyte-triggered cyclic autocatalytic oxidation amplification combined with an upconversion nanoparticle probe for fluorometric detection of Copper(II). Microchim. Acta 185, 1–9 (2018). https://doi.org/10.1007/S00604-018-3015-Z/FIGURES/5

    Article  Google Scholar 

  18. B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750–761 (1962). https://doi.org/10.1103/PhysRev.127.750

    Article  Google Scholar 

  19. G. Chen, G. Somesfalean, Y. Liu, Z. Zhang, Q. Sun, F. Wang, Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystals. Phys. Rev. B Condens. Matter Mater. Phys. 75, 195204, (2007). https://doi.org/10.1103/PhysRevB.75.195204

  20. M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, M. Hehlen, Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337 (2000). https://doi.org/10.1103/PhysRevB.61.3337

    Article  Google Scholar 

  21. J.F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, H.U. Güdel, Anomalous power dependence of sensitized upconversion luminescence. Phys. Rev. B Condens. Matter Mater. Phys. 71, 125123 (2005). https://doi.org/10.1103/PHYSREVB.71.125123/FIGURES/8/MEDIUM

  22. G. Chen, H. Qiu, P.N. Prasad, X. Chen, Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014). https://doi.org/10.1021/cr400425h

    Article  Google Scholar 

  23. B. Chen, F. Wang, Emerging frontiers of upconversion nanoparticles. Trends Chem. 2, 427–439 (2020). https://doi.org/10.1016/j.trechm.2020.01.008

    Article  Google Scholar 

  24. Z. Luo, L. Zhang, R. Zeng, L. Su, D. Tang, Near-infrared light-excited core-core-shell UCNP@Au@CdS upconversion nanospheres for ultrasensitive photoelectrochemical enzyme immunoassay. Anal. Chem. 90, 9568–9575 (2018). https://doi.org/10.1021/ACS.ANALCHEM.8B02421/SUPPL_FILE/AC8B02421_SI_001.PDF

    Article  Google Scholar 

  25. C. Hao, X. Wu, M. Sun, H. Zhang, A. Yuan, L. Xu, C. Xu, H. Kuang, Chiral core-shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc. 141, 19373–19378 (2019). https://doi.org/10.1021/JACS.9B09360/SUPPL_FILE/JA9B09360_SI_001.PDF

    Article  Google Scholar 

  26. N. Bloembergen, Solid state infrared quantum counters. Phys. Rev. Lett. 2, 84 (1959). https://doi.org/10.1103/PhysRevLett.2.84

    Article  Google Scholar 

  27. H. Schäfer, P. Ptacek, H. Eickmeier, M. Haase, Synthesis of hexagonal Yb3+, Er3+-doped NaYF4 nanocrystals at low temperature. Adv. Funct. Mater. 19, 3091–3097 (2009). https://doi.org/10.1002/ADFM.200900642

    Article  Google Scholar 

  28. H. Schäfer, P. Ptacek, R. Kömpe, M. Haase, Lanthanide-doped NaYF4 nanocrystals in aqueous solution displaying strong up-conversion emission. Chem. Mater. 19, 1396–1400 (2007). https://doi.org/10.1021/CM062385B/ASSET/IMAGES/MEDIUM/CM062385BN00001.GIF

    Article  Google Scholar 

  29. A. Gulzar, J. Xu, P. Yang, F. He, L. Xu, Upconversion processes: versatile biological applications and biosafety. Nanoscale 9, 12248–12282 (2017). https://doi.org/10.1039/C7NR01836C

    Article  Google Scholar 

  30. D. Vennerberg, Z. Lin, Upconversion nanocrystals: synthesis, properties, assembly and applications. Sci. Adv. Mater. 3, 26–40 (2011). https://doi.org/10.1166/SAM.2011.1137

    Article  Google Scholar 

  31. H. Zhang, Y. Li, I.A. Ivanov, Y. Qu, Y. Huang, X. Duan, Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. 122, 2927–2930 (2010). https://doi.org/10.1002/ANGE.200905805

    Article  Google Scholar 

  32. D. Chen, Y. Wang, Y. Yu, P. Huang, Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals embedded glass ceramic. Appl. Phys. Lett. 91, 051920 (2007). https://doi.org/10.1063/1.2767988

    Article  Google Scholar 

  33. G. Wang, Q. Peng, Y. Li, Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 131, 14200–14201 (2009). https://doi.org/10.1021/JA906732Y/SUPPL_FILE/JA906732Y_SI_001.PDF

    Article  Google Scholar 

  34. R. Arppe, I. Hyppänen, N. Perälä, R. Peltomaa, M. Kaiser, C. Würth, S. Christ, U. Resch-Genger, M. Schäferling, T. Soukka, Quenching of the upconversion luminescence of NaYF4:Yb3+, Er3+ and NaYF4:Yb3+, Tm3+ nanophosphors by water: the role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 7, 11746–11757 (2015). https://doi.org/10.1039/C5NR02100F

    Article  Google Scholar 

  35. J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, M. Sun, Plasmon-enhanced upconversion photoluminescence: mechanism and application. Rev. Phys. 4, 100026 (2019). https://doi.org/10.1016/J.REVIP.2018.100026

    Article  Google Scholar 

  36. S. Sinha, M.K. Mahata, K. Kumar, S.P. Tiwari, V.K. Rai, Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor, spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173, 369–375 (2017). https://doi.org/10.1016/J.SAA.2016.09.039

    Article  Google Scholar 

  37. M.K. Mahata, K. Kumar, V.K. Rai, Er3+–Yb3+ doped vanadate nanocrystals: a highly sensitive thermographic phosphor and its optical nanoheater behavior. Sens. Actuators B Chem. 209, 775–780 (2015). https://doi.org/10.1016/J.SNB.2014.12.039

    Article  Google Scholar 

  38. M.K. Mahata, T. Koppe, K. Kumar, H. Hofsäss, U. Vetter, Upconversion photoluminescence of Ho3+-Yb3+ doped barium titanate nanocrystallites: optical tools for structural phase detection and temperature probing. Sci. Rep. 10, 1–12 (2020). https://doi.org/10.1038/s41598-020-65149-z

    Article  Google Scholar 

  39. R. Naccache, F. Vetrone, V. Mahalingam, L.A. Cuccia, J.A. Capobianco, Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles. Chem. Mater. 21, 717–723 (2009). https://doi.org/10.1021/CM803151Y/ASSET/IMAGES/MEDIUM/CM-2008-03151Y_0008.GIF

    Article  Google Scholar 

  40. J. Wang, J. Hu, D. Tang, X. Liu, Z. Zhen, Oleic acid (OA)-modified LaF3:Er, Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications. J. Mater. Chem. 17, 1597–1601 (2007). https://doi.org/10.1039/B617754A

    Article  Google Scholar 

  41. M.K. Mahata, T. Koppe, T. Mondal, C. Brüsewitz, K. Kumar, V. Kumar Rai, H. Hofsäss, U. Vetter, Incorporation of Zn(2+) ions into BaTiO3:Er(3+)/Yb(3+) nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing. Phys. Chem. Chem. Phys. 17, 20741–20753 (2015). https://doi.org/10.1039/C5CP01874A

  42. S. Sinha, M.K. Mahata, K. Kumar, Enhancing the upconversion luminescence properties of Er3+–Yb3+ doped yttrium molybdate through Mg2+ incorporation: effect of laser excitation power on temperature sensing and heat generation. New J. Chem. 43, 5960–5971 (2019). https://doi.org/10.1039/C9NJ00760A

    Article  Google Scholar 

  43. S. Sinha, M.K. Mahata, K. Kumar, Comparative thermometric properties of bi-functional Er3+–Yb3+ doped rare earth (RE = Y, Gd and La) molybdates. Mater. Res. Express 5, 026201 (2018). https://doi.org/10.1088/2053-1591/AAA861

    Article  Google Scholar 

  44. E. Andresen, U. Resch-Genger, M. Schäferling, Surface modifications for photon-upconversion-based energy-transfer nanoprobes. Langmuir 35, 5093–5113 (2019). https://doi.org/10.1021/ACS.LANGMUIR.9B00238/ASSET/IMAGES/MEDIUM/LA-2019-00238A_0009.GIF

    Article  Google Scholar 

  45. K. Kumar, M.K. Mahata, S. Mukherjee, S.P. Tiwari, V.K. Rai, YVO4:Er3+/Yb3+ phosphor for multifunctional applications. JOSA B 31(8), 1814–1821 (2014). https://doi.org/10.1364/JOSAB.31.001814

  46. M.K. Mahata, T. Koppe, H. Hofsäss, K. Kumar, U. Vetter, Host sensitized luminescence and time-resolved spectroscopy of YVO4:Ho3+ nanocrystals. Phys. Procedia 76, 125–131 (2015). https://doi.org/10.1016/J.PHPRO.2015.10.023

    Article  Google Scholar 

  47. M.K. Mahata, T. Koppe, K. Kumar, H. Hofsäss, U. Vetter, Demonstration of temperature dependent energy migration in dual-mode YVO4:Ho3+/Yb3+ nanocrystals for low temperature thermometry. Sci. Rep. 61(6), 1–11 (2016). https://doi.org/10.1038/srep36342

  48. S. Heer, K. Kömpe, H.U. Güdel, M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004). https://doi.org/10.1002/ADMA.200400772

    Article  Google Scholar 

  49. A.K. Soni, V.K. Rai, M.K. Mahata, Yb3+ sensitized Na2Y2B2O7:Er3+ phosphors in enhanced frequency upconversion, temperature sensing and field emission display. Mater. Res. Bull. 89, 116–124 (2017). https://doi.org/10.1016/J.MATERRESBULL.2017.01.009

    Article  Google Scholar 

  50. S. Sinha, M.K. Mahata, K. Kumar, Up/down-converted green luminescence of Er3+–Yb3+ doped paramagnetic gadolinium molybdate: a highly sensitive thermographic phosphor for multifunctional applications. RSC Adv. 6, 89642–89654 (2016). https://doi.org/10.1039/C6RA20332A

    Article  Google Scholar 

  51. M.K. Mahata, K. Kumar, V.K. Rai, Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method, spectrochim. Acta Part A Mol. Biomol. Spectrosc. 124, 285–291 (2014). https://doi.org/10.1016/J.SAA.2014.01.014

    Article  Google Scholar 

  52. C. Liu, D. Chen, Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence. J. Mater. Chem. 17, 3875–3880 (2007). https://doi.org/10.1039/B707927C

    Article  Google Scholar 

  53. K. Zheng, K.Y. Loh, Y. Wang, Q. Chen, J. Fan, T. Jung, S.H. Nam, Y.D. Suh, X. Liu, Recent advances in upconversion nanocrystals: expanding the kaleidoscopic toolbox for emerging applications. Nano Today 29, 100797 (2019). https://doi.org/10.1016/J.NANTOD.2019.100797

    Article  Google Scholar 

  54. M. Patel, M. Meenu, J.K. Pandey, P. Kumar, R. Patel, Recent development in upconversion nanoparticles and their application in optogenetics: a review. J. Rare Earths 40, 847–861 (2022). https://doi.org/10.1016/j.jre.2021.10.003

    Article  Google Scholar 

  55. Q. Feng, W. Zheng, J. Pu, Q. Chen, W. Shao, NIR-II upconversion photoluminescence of Er3+ doped LiYF4 and NaY(Gd)F4 core-shell nanoparticles. Front. Chem. 9 (2021). https://doi.org/10.3389/fchem.2021.690833

  56. K.Y. Zhang, H.W. Liu, M.C. Tang, A.W.T. Choi, N. Zhu, X.G. Wei, K.C. Lau, K.K.W. Lo, Dual-emissive cyclometalated Iridium(III) polypyridine complexes as ratiometric biological probes and organelle-selective bioimaging reagents. Inorg. Chem. 54, 6582–6593 (2015). https://doi.org/10.1021/ACS.INORGCHEM.5B00944/SUPPL_FILE/IC5B00944_SI_002.CIF

    Article  Google Scholar 

  57. V. Yakutkin, S. Aleshchenkov, S. Chernov, T. Miteva, G. Nelles, A. Cheprakov, S. Baluschev, Towards the IR limit of the triplet–triplet annihilation-supported up-conversion: tetraanthraporphyrin. Chem. A Eur. J. 14, 9846–9850 (2008). https://doi.org/10.1002/CHEM.200801305

  58. Y. Li, R. Wang, W. Zheng, Y. Li, Silica-coated Ga(III)-doped ZnO:Yb3+, Tm3+ upconversion nanoparticles for high-resolution in vivo bioimaging using near-infrared to near-infrared upconversion emission. Inorg. Chem. 58, 8230–8236 (2019). https://doi.org/10.1021/ACS.INORGCHEM.9B01056/SUPPL_FILE/IC9B01056_SI_001.PDF

    Article  Google Scholar 

  59. Q. Chen, X. Xie, B. Huang, L. Liang, S. Han, Z. Yi, Y. Wang, Y. Li, D. Fan, L. Huang, X. Liu, Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping. Angew. Chem. 129, 7713–7717 (2017). https://doi.org/10.1002/ANGE.201703012

    Article  Google Scholar 

  60. X. Wang, A. Yakovliev, T.Y. Ohulchanskyy, L. Wu, S. Zeng, X. Han, J. Qu, G. Chen, Efficient erbium-sensitized core/shell nanocrystals for short wave infrared bioimaging. Adv. Opt. Mater. 6, 1800690 (2018). https://doi.org/10.1002/ADOM.201800690

    Article  Google Scholar 

  61. L. Liu, S. Wang, B. Zhao, P. Pei, Y. Fan, X. Li, F. Zhang, Er3+ sensitized 1530 nm to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing. Angew. Chem. 130, 7640–7644 (2018). https://doi.org/10.1002/ANGE.201802889

    Article  Google Scholar 

  62. C. Gu, Y. Ding, X. Quan, M. Gong, J. Yu, D. Zhao, C. Li, Near-infrared luminescent Nd3+/Yb3+-codoped metal–organic framework for ratiometric temperature sensing in physiological range. J. Rare Earths 39, 1024–1030 (2021). https://doi.org/10.1016/J.JRE.2020.07.011

    Article  Google Scholar 

  63. Y. Wang, H. Li, H. Ma, L. Huang, Colour modulation and enhancement of upconversion emissions in K2NaScF6:Yb/Ln (Ln = Er, Ho, Tm) nanocrystals. J. Rare Earths 39, 1477–1483 (2021). https://doi.org/10.1016/J.JRE.2021.04.007

    Article  Google Scholar 

  64. C. Yang, Y. Li, N. Wu, Y. Zhang, W. Feng, M. Yu, Z. Li, Ratiometric upconversion luminescence nanoprobes for quick sensing of Hg2+ and cells imaging. Sens. Actuators B Chem. 326, 128841 (2021). https://doi.org/10.1016/J.SNB.2020.128841

    Article  Google Scholar 

  65. X. Liang, J. Fan, Y. Zhao, R. Jin, Synthesis of NaYF4:Yb, Er upconversion nanoparticle-based optomagnetic multifunctional composite for drug delivery system. J. Rare Earths 39, 579–586 (2021). https://doi.org/10.1016/J.JRE.2020.08.003

    Article  Google Scholar 

  66. F. Shi, J. Wang, X. Zhai, D. Zhao, W. Qin, Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence. CrystEngComm 13, 3782–3787 (2011). https://doi.org/10.1039/C1CE05092C

    Article  Google Scholar 

  67. P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, X. Chen, Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew. Chem. Int. Ed. 53, 1252–1257 (2014). https://doi.org/10.1002/ANIE.201309503

    Article  Google Scholar 

  68. G. Pan, X. Bai, D. Yang, X. Chen, P. Jing, S. Qu, L. Zhang, D. Zhou, J. Zhu, W. Xu, B. Dong, H. Song, Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties. Nano Lett. 17, 8005–8011 (2017). https://doi.org/10.1021/ACS.NANOLETT.7B04575/SUPPL_FILE/NL7B04575_SI_001.PDF

    Article  Google Scholar 

  69. L. Wang, Y. Li, Green upconversion nanocrystals for DNA detection. Chem. Commun. 2557–2559 (2006). https://doi.org/10.1039/B604871D

  70. K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244–1251 (2004). https://doi.org/10.1021/CM031124O

    Article  Google Scholar 

  71. E. De La Rosa, P. Salas, H. Desirena, C. Angeles, R.A. Rodríguez, Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals. Appl. Phys. Lett. 87, 241912 (2005). https://doi.org/10.1063/1.2143131

  72. W. Zou, C. Visser, J.A. Maduro, M.S. Pshenichnikov, J.C. Hummelen, Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 68(6), 560–564 (2012). https://doi.org/10.1038/nphoton.2012.158

  73. G. Chen, J. Damasco, H. Qiu, W. Shao, T.Y. Ohulchanskyy, R.R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, P.N. Prasad, Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 15, 7400–7407 (2015). https://doi.org/10.1021/ACS.NANOLETT.5B02830/SUPPL_FILE/NL5B02830_SI_001.PDF

    Article  Google Scholar 

  74. X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, G. Han, Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging. Nanoscale 7, 18424–18428 (2015). https://doi.org/10.1039/C5NR05437K

    Article  Google Scholar 

  75. G. Chen, W. Shao, R.R. Valiev, T.Y. Ohulchanskyy, G.S. He, H. Ågren, P.N. Prasad, Efficient broadband upconversion of near-infrared light in dye-sensitized core/shell nanocrystals. Adv. Opt. Mater. 4, 1760–1766 (2016). https://doi.org/10.1002/ADOM.201600556

    Article  Google Scholar 

  76. J. Xu, P. Yang, M. Sun, H. Bi, B. Liu, D. Yang, S. Gai, F. He, J. Lin, Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 11, 4133–4144 (2017). https://doi.org/10.1021/ACSNANO.7B00944/SUPPL_FILE/NN7B00944_SI_001.PDF

    Article  Google Scholar 

  77. D.J. Garfield, N.J. Borys, S.M. Hamed, N.A. Torquato, C.A. Tajon, B. Tian, B. Shevitski, E.S. Barnard, Y.D. Suh, S. Aloni, J.B. Neaton, E.M. Chan, B.E. Cohen, P.J. Schuck, Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photonics 12, 402–407 (2018). https://doi.org/10.1038/s41566-018-0156-x

    Article  Google Scholar 

  78. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 1012(10), 968–973 (2011). https://doi.org/10.1038/nmat3149

  79. X. Li, X. Liu, D.M. Chevrier, X. Qin, X. Xie, S. huyan Song, H. Zhang, P. Zhang, X. Liu, D. Li, X. Liu, D. Xie, D. Qin, D.M. Chevrier, P. Zhang, D. Song, H. Zhang, Energy migration upconversion in manganese (II)-doped nanoparticles. Angew. Chem. Int. Ed. 54, 13312–13317 (2015). https://doi.org/10.1002/ANIE.201507176

  80. T. Aidilibike, J. Guo, L. Wang, X. Liu, Y. Li, W. Qin, Ultraviolet upconversion emission of Pb2+ ions sensitized by Yb3+-trimers in CaF2. RSC Adv. 7, 2676–2681 (2017). https://doi.org/10.1039/C6RA25344J

    Article  Google Scholar 

  81. T. Aidilibike, Y. Li, J. Guo, X. Liu, W. Qin, Blue upconversion emission of Cu2+ ions sensitized by Yb3+-trimers in CaF2. J. Mater. Chem. C 4, 2123–2126 (2016). https://doi.org/10.1039/C5TC04433B

    Article  Google Scholar 

  82. X. Liu, T. Aidilibike, J. Guo, Y. Li, W. Di, W. Qin, Upconversion luminescence of Sm2+ ions. RSC Adv. 7, 14010–14014 (2017). https://doi.org/10.1039/C7RA00071E

    Article  Google Scholar 

  83. F. Wang, J. Wang, X. Liu, F. Wang, J. Wang, X. Liu, Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. 49, 7456–7460 (2010). https://doi.org/10.1002/ANIE.201003959

    Article  Google Scholar 

  84. C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C.I. Lang, D. Jin, Optimal sensitizer concentration in single upconversion nanocrystals. Nano Lett. 17, 2858–2864 (2017). https://doi.org/10.1021/ACS.NANOLETT.6B05331/SUPPL_FILE/NL6B05331_SI_001.PDF

    Article  Google Scholar 

  85. W. Shao, G. Chen, A. Kuzmin, H.L. Kutscher, A. Pliss, T.Y. Ohulchanskyy, P.N. Prasad, Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J. Am. Chem. Soc. 138, 16192–16195 (2016). https://doi.org/10.1021/JACS.6B08973/SUPPL_FILE/JA6B08973_SI_001.PDF

    Article  Google Scholar 

  86. M.D. Wisser, S. Fischer, C. Siefe, A.P. Alivisatos, A. Salleo, J.A. Dionne, Improving quantum yield of upconverting nanoparticles in aqueous media via emission sensitization. Nano Lett. 18, 2689–2695 (2018). https://doi.org/10.1021/ACS.NANOLETT.8B00634/SUPPL_FILE/NL8B00634_SI_001.PDF

    Article  Google Scholar 

  87. X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S.F. Yu, F. Wang, Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nat. Commun. 71(7), 1–6 (2016). https://doi.org/10.1038/ncomms10304

  88. X. Liu, X. Kong, Y. Zhang, L. Tu, Y. Wang, Q. Zeng, C. Li, Z. Shi, H. Zhang, Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications. Chem. Commun. 47, 11957–11959 (2011). https://doi.org/10.1039/C1CC14774A

    Article  Google Scholar 

  89. K. Huang, H. Liu, M. Kraft, S. Shikha, X. Zheng, H. Ågren, C. Würth, U. Resch-Genger, Y. Zhang, A protected excitation-energy reservoir for efficient upconversion luminescence. Nanoscale 10, 250–259 (2017). https://doi.org/10.1039/C7NR06900F

    Article  Google Scholar 

  90. W. Feng, L.D. Sun, C.H. Yan, Ag nanowires enhanced upconversion emission of NaYF4:Yb, Er nanocrystals via a direct assembly method. Chem. Commun. 0, 4393–4395 (2009). https://doi.org/10.1039/B909164E

  91. F. Vetrone, R. Naccache, V. Mahalingam, C.G. Morgan, J.A. Capobianco, The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 19, 2924–2929 (2009). https://doi.org/10.1002/ADFM.200900234

    Article  Google Scholar 

  92. M. Ding, D. Chen, D. Ma, J. Dai, Y. Li, Z. Ji, Highly enhanced upconversion luminescence in lanthanide-doped active-core/luminescent-shell/active-shell nanoarchitectures. J. Mater. Chem. C 4, 2432–2437 (2016). https://doi.org/10.1039/C6TC00163G

    Article  Google Scholar 

  93. J. Zhou, Z. Liu, F. Li, Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41, 1323–1349 (2012). https://doi.org/10.1039/C1CS15187H

    Article  Google Scholar 

  94. L.D. Sun, Y.F. Wang, C.H. Yan, Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. Acc. Chem. Res. 47, 1001–1009 (2014). https://doi.org/10.1021/AR400218T/ASSET/IMAGES/MEDIUM/AR-2013-00218T_0010.GIF

    Article  Google Scholar 

  95. B. Zhou, B. Shi, D. Jin, X. Liu, Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 1011(10), 924–936 (2015). https://doi.org/10.1038/nnano.2015.251

  96. M. Wang, G. Abbineni, A. Clevenger, C. Mao, S. Xu, Upconversion nanoparticles: synthesis, surface modification and biological applications, nanomedicine nanotechnology. Biol. Med. 7, 710–729 (2011). https://doi.org/10.1016/J.NANO.2011.02.013

    Article  Google Scholar 

  97. X. Wu, G. Chen, J. Shen, Z. Li, Y. Zhang, G. Han, Upconversion nanoparticles: a versatile solution to multiscale biological imaging. Bioconjug. Chem. 26, 166–175 (2015). https://doi.org/10.1021/BC5003967/ASSET/IMAGES/LARGE/BC-2014-003967_0010.JPEG

    Article  Google Scholar 

  98. B. Viana, C. Richard, D. Jaque, J.G. Solé, K. Soga, X. Liu, Inorganic nanoparticles for optical bioimaging. Adv. Opt. Photonics 8(1), 1–103 (2016). https://doi.org/10.1364/AOP.8.000001

  99. B. Del Rosal, D. Jaque, Upconversion nanoparticles for in vivo applications: limitations and future perspectives. Methods Appl. Fluoresc. 7, 022001 (2019). https://doi.org/10.1088/2050-6120/ab029f

    Article  Google Scholar 

  100. M.J. O’Connell, S.H. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Band gap fluorescence from individual single-walled carbon nanotubes. Science 80(297), 593–596 (2002). https://doi.org/10.1126/SCIENCE.1072631

  101. F. Wang, X. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008). https://doi.org/10.1021/JA800868A/SUPPL_FILE/JA800868A-FILE002.PDF

    Article  Google Scholar 

  102. J.R. Taylor, M.M. Fang, S. Nie, Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal. Chem. 72, 1979–1986 (2000). https://doi.org/10.1021/AC9913311

    Article  Google Scholar 

  103. M. Wang, C.C. Mi, W.X. Wang, C.H. Liu, Y.F. Wu, Z.R. Xu, C. Bin Mao, S.K. Xu, Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles. ACS Nano 3, 1580–1586 (2009). https://doi.org/10.1021/NN900491J/ASSET/IMAGES/MEDIUM/NN-2009-00491J_0009.GIF

  104. J. Jin, Y.J. Gu, C.W.Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V.H.Y. Lee, S.H. Cheng, W.T. Wong, Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano 5, 7838–7847 (2011). https://doi.org/10.1021/NN201896M/SUPPL_FILE/NN201896M_SI_001.PDF

    Article  Google Scholar 

  105. C. Wang, L. Cheng, H. Xu, Z. Liu, Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials 33, 4872–4881 (2012). https://doi.org/10.1016/J.BIOMATERIALS.2012.03.047

    Article  Google Scholar 

  106. D.K. Chatterjee, A.J. Rufaihah, Y. Zhang, Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29, 937–943 (2008). https://doi.org/10.1016/J.BIOMATERIALS.2007.10.051

    Article  Google Scholar 

  107. Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, F. Li, Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 133, 17122–17125 (2011). https://doi.org/10.1021/JA207078S/SUPPL_FILE/JA207078S_SI_001.PDF

    Article  Google Scholar 

  108. T. Yang, Y. Sun, Q. Liu, W. Feng, P. Yang, F. Li, Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 33, 3733–3742 (2012). https://doi.org/10.1016/J.BIOMATERIALS.2012.01.063

    Article  Google Scholar 

  109. G. Chen, J. Shen, T.Y. Ohulchanskyy, N.J. Patel, A. Kutikov, Z. Li, J. Song, R.K. Pandey, H. Agren, P.N. Prasad, G. Han, (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6, 8280–8287 (2012). https://doi.org/10.1021/NN302972R/SUPPL_FILE/NN302972R_SI_001.PDF

    Article  Google Scholar 

  110. R. Weissleder, M.J. Pittet, Imaging in the era of molecular oncology. Nature 452, 580–589 (2008). https://doi.org/10.1038/nature06917

    Article  Google Scholar 

  111. J.K. Willmann, N. van Bruggen, L.M. Dinkelborg, S.S. Gambhir, Molecular imaging in drug development. Nat. Rev. Drug Discov. 77(7), 591–607 (2008). https://doi.org/10.1038/nrd2290

  112. L.E. Jennings, N.J. Long, ‘Two is better than one’—probes for dual-modality molecular imaging. Chem. Commun. 3511–3524 (2009). https://doi.org/10.1039/B821903F

  113. Q. Liu, W. Feng, F. Li, Water-soluble lanthanide upconversion nanophosphors: synthesis and bioimaging applications in vivo. Coord. Chem. Rev. 273–274, 100–110 (2014). https://doi.org/10.1016/J.CCR.2014.01.004

    Article  Google Scholar 

  114. F. He, G. Yang, P. Yang, Y. Yu, R. Lv, C. Li, Y. Dai, S. Gai, J. Lin, A New single 808 nm NIR light-induced imaging-guided multifunctional cancer therapy platform. Adv. Funct. Mater. 25, 3966–3976 (2015). https://doi.org/10.1002/ADFM.201500464

    Article  Google Scholar 

  115. Y. Liu, N. Kang, J. Lv, Z. Zhou, Q. Zhao, L. Ma, Z. Chen, L. Ren, L. Nie, Y. Liu, J. Lv, Z. Zhou, Q. Zhao, L. Nie, N. Kang, L. Ren, L. Ma, Z. Chen, Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high-efficiency upconversion nanocomposites. Adv. Mater. 28, 6411–6419 (2016). https://doi.org/10.1002/ADMA.201506460

    Article  Google Scholar 

  116. Y. Sun, M. Yu, S. Liang, Y. Zhang, C. Li, T. Mou, W. Yang, X. Zhang, B. Li, C. Huang, F. Li, Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials 32, 2999–3007 (2011). https://doi.org/10.1016/J.BIOMATERIALS.2011.01.011

    Article  Google Scholar 

  117. Y. Yang, Y. Sun, T. Cao, J. Peng, Y. Liu, Y. Wu, W. Feng, Y. Zhang, F. Li, Hydrothermal synthesis of NaLuF4:153Sm, Yb, Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials 34, 774–783 (2013). https://doi.org/10.1016/J.BIOMATERIALS.2012.10.022

    Article  Google Scholar 

  118. S. Wu, G. Han, D.J. Milliron, S. Aloni, V. Altoe, D.V. Talapin, B.E. Cohen, P.J. Schuck, Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl. Acad. Sci. 106, 10917–10921 (2009). https://doi.org/10.1073/PNAS.0904792106

    Article  Google Scholar 

  119. Y. Il Park, J.H. Kim, K.T. Lee, K.S. Jeon, H. Bin Na, J.H. Yu, H.M. Kim, N. Lee, S.H. Choi, S. Il Baik, H. Kim, S.P. Park, B.J. Park, Y.W. Kim, S.H. Lee, S.Y. Yoon, I.C. Song, W.K. Moon, Y.D. Suh, T. Hyeon, Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 21, 4467–4471 (2009). https://doi.org/10.1002/ADMA.200901356

  120. S.H. Nam, Y.M. Bae, Y. Il Park, J.H. Kim, H.M. Kim, J.S. Choi, K.T. Lee, T. Hyeon, Y.D. Suh, Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew. Chem. Int. Ed. 50, 6093–6097 (2011). https://doi.org/10.1002/ANIE.201007979

  121. A.D. Ostrowski, E.M. Chan, D.J. Gargas, E.M. Katz, G. Han, P.J. Schuck, D.J. Milliron, B.E. Cohen, Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano 6, 2686–2692 (2012). https://doi.org/10.1021/NN3000737/SUPPL_FILE/NN3000737_SI_001.PDF

    Article  Google Scholar 

  122. Y. Bai, K. Yang, Y. Wang, X. Zhang, Y. Song, Enhancement of the upconversion photoluminescence intensity in Li+ and Er3+ codoped Y2O3 nanocrystals. Opt. Commun. 281, 2930–2932 (2008). https://doi.org/10.1016/J.OPTCOM.2008.01.014

    Article  Google Scholar 

  123. T. Cao, T. Yang, Y. Gao, Y. Yang, H. Hu, F. Li, Water-soluble NaYF4:Yb/Er upconversion nanophosphors: synthesis, characteristics and application in bioimaging. Inorg. Chem. Commun. 13, 392–394 (2010). https://doi.org/10.1016/j.inoche.2009.12.031

    Article  Google Scholar 

  124. Y. Zhang, F. Zheng, T. Yang, W. Zhou, Y. Liu, N. Man, L. Zhang, N. Jin, Q. Dou, Y. Zhang, Z. Li, L.P. Wen, Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat. Mater. 119(11), 817–826 (2012). https://doi.org/10.1038/nmat3363

  125. L. Yu, Y. Lu, N. Man, S.H. Yu, L.P. Wen, Rare earth oxide nanocrystals induce autophagy in HeLa cells. Small 5, 2784–2787 (2009). https://doi.org/10.1002/SMLL.200901714

    Article  Google Scholar 

  126. F. Vetrone, R. Naccache, A. Juarranz De La Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E.M. Rodriguez, D. Jaque, J.G. Solé, J.A. Capobianco, Intracellular imaging of HeLa cells by non-functionalized NaYF4:Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 495–498 (2010). https://doi.org/10.1039/B9NR00236G

    Article  Google Scholar 

  127. N.N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J.E. Ramírez-Hernández, L.M. Maestro, M.C. Iglesias-De La Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J.A. Capobianco, J.G. Solé, M. Bettinelli, D. Jaque, A. Speghini, NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 5, 8665–8671 (2011). https://doi.org/10.1021/NN202490M/SUPPL_FILE/NN202490M_SI_001.PDF

    Article  Google Scholar 

  128. M.R. Ketabchi, M. Khalid, T. Chantara, A. Ratnam, X. Wang, J.-L. Li, H. Akiyama, K. Tokuzen, H. Otsuka, K. Soga, F. Tashiro, Application of liposome-encapsulated ceramic phoshpors for cancer cell imaging under near infrared excitation. J. Phys. Conf. Ser. 232, 012001 (2010). https://doi.org/10.1088/1742-6596/232/1/012001

    Article  Google Scholar 

  129. K. Liu, X. Liu, Q. Zeng, Y. Zhang, L. Tu, T. Liu, X. Kong, Y. Wang, F. Cao, S.A.G. Lambrechts, M.C.G. Aalders, H. Zhang, Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano 6, 4054–4062 (2012). https://doi.org/10.1021/NN300436B/SUPPL_FILE/NN300436B_SI_001.PDF

    Article  Google Scholar 

  130. K.Y. Lee, E. Seow, Y. Zhang, Y.C. Lim, Targeting CCL21–folic acid–upconversion nanoparticles conjugates to folate receptor-α expressing tumor cells in an endothelial-tumor cell bilayer model. Biomaterials 34, 4860–4871 (2013). https://doi.org/10.1016/J.BIOMATERIALS.2013.03.029

    Article  Google Scholar 

  131. C. Wang, L. Cheng, Z. Liu, Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32, 1110–1120 (2011). https://doi.org/10.1016/J.BIOMATERIALS.2010.09.069

    Article  Google Scholar 

  132. M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, S. Xu, NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. J. Phys. Chem. C 113, 19021–19027 (2009). https://doi.org/10.1021/JP906394Z/SUPPL_FILE/JP906394Z_SI_001.PDF

    Article  Google Scholar 

  133. J. Zhao, D. Jin, E.P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J.M. Dawes, P. Xi, J.A. Piper, E.M. Goldys, T.M. Monro, Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 810(8), 729–734 (2013). https://doi.org/10.1038/nnano.2013.171

  134. B.M. Dale, M.A. Brown, R.C. Semelka, MRI Basic Principles and Applications (2015). https://doi.org/10.1002/9781119013068

  135. M.M.J. Modo, J.W.M. Bulte, What is molecular and cellular imaging? in Molecular and Cellular MR Imaging (2007), pp. 1–9. https://doi.org/10.1201/9781420004090-1

  136. Y.-X.J. Wang, Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant. Imaging Med. Surg. 1, 35 (2011). https://doi.org/10.3978/J.ISSN.2223-4292.2011.08.03

    Article  Google Scholar 

  137. J.W.M. Bulte, D.L. Kraitchman, Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004). https://doi.org/10.1002/NBM.924

    Article  Google Scholar 

  138. Y.W. Jun, Y.M. Huh, J.S. Choi, J.H. Lee, H.T. Song, S. Kim, S. Yoon, K.S. Kim, J.S. Shin, J.S. Suh, J. Cheon, Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127, 5732–5733 (2005). https://doi.org/10.1021/JA0422155/SUPPL_FILE/JA0422155SI20050216_072238.PDF

    Article  Google Scholar 

  139. F. Kiessling, M.E. Mertens, J. Grimm, T. Lammers, Nanoparticles for Imaging: top or flop? Radiology 273, 10 (2014). https://doi.org/10.1148/RADIOL.14131520

    Article  Google Scholar 

  140. N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon, J. Cheon, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115, 10637–10689 (2015). https://doi.org/10.1021/ACS.CHEMREV.5B00112/ASSET/IMAGES/ACS.CHEMREV.5B00112.SOCIAL.JPEG_V03

    Article  Google Scholar 

  141. J.G. Penfield, R.F. Reilly, What nephrologists need to know about gadolinium. Nat. Clin. Pract. Nephrol. 312(3), 654–668 (2007). https://doi.org/10.1038/ncpneph0660

  142. H. Arami, A. Khandhar, D. Liggitt, K.M. Krishnan, In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44, 8576–8607 (2015). https://doi.org/10.1039/C5CS00541H

    Article  Google Scholar 

  143. J. Kolosnjaj-Tabi, Y. Javed, L. Lartigue, J. Volatron, D. Elgrabli, I. Marangon, G. Pugliese, B. Caron, A. Figuerola, N. Luciani, T. Pellegrino, D. Alloyeau, F. Gazeau, The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano 9, 7925–7939 (2015). https://doi.org/10.1021/ACSNANO.5B00042/SUPPL_FILE/NN5B00042_SI_001.PDF

    Article  Google Scholar 

  144. M.H. Schwenk, Ferumoxytol: a new intravenous iron preparation for the treatment of iron deficiency anemia in patients with chronic kidney disease, pharmacother. Pharmacother. J. Hum. Pharmacol. Drug Ther. 30, 70–79 (2010). https://doi.org/10.1592/PHCO.30.1.70

    Article  Google Scholar 

  145. A. Giovagnoni, A. Fabbri, F. Maccioni, Oral contrast agents in MRI of the gastrointestinal tract. Abdom. Radiol. 27, 367–375 (2002). https://doi.org/10.1007/S00261-001-0117-5

    Article  Google Scholar 

  146. J. Park, K. An, Y. Hwang, J.E.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 312(3), 891–895 (2004). https://doi.org/10.1038/nmat1251

  147. R. Chen, M.G. Christiansen, A. Sourakov, A. Mohr, Y. Matsumoto, S. Okada, A. Jasanoff, P. Anikeeva, High-performance ferrite nanoparticles through nonaqueous redox phase tuning. Nano Lett. 16, 1345–1351 (2016). https://doi.org/10.1021/ACS.NANOLETT.5B04761/SUPPL_FILE/NL5B04761_SI_001.PDF

    Article  Google Scholar 

  148. N. Lee, Y. Choi, Y. Lee, M. Park, W.K. Moon, S.H. Choi, T. Hyeon, Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett. 12, 3127–3131 (2012). https://doi.org/10.1021/nl3010308

    Article  Google Scholar 

  149. B.H. Kim, N. Lee, H. Kim, K. An, Y. Il Park, Y. Choi, K. Shin, Y. Lee, S.G. Kwon, H. Bin Na, J.G. Park, T.Y. Ahn, Y.W. Kim, W.K. Moon, S.H. Choi, T. Hyeon, Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 133, 12624–12631 (2011). https://doi.org/10.1021/ja203340u

  150. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem. Rev. 108, 2064–2110 (2008). https://doi.org/10.1021/CR068445E/ASSET/CR068445E.FP.PNG_V03

  151. T.H. Shin, J.S. Choi, S. Yun, I.S. Kim, H.T. Song, Y. Kim, K.I. Park, J. Cheon, T1 and T2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano 8, 3393–3401 (2014). https://doi.org/10.1021/nn405977t

    Article  Google Scholar 

  152. D. Ling, W. Park, S.J. Park, Y. Lu, K.S. Kim, M.J. Hackett, B.H. Kim, H. Yim, Y.S. Jeon, K. Na, T. Hyeon, Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc. 136, 5647–5655 (2014). https://doi.org/10.1021/JA4108287/SUPPL_FILE/JA4108287_SI_001.PDF

    Article  Google Scholar 

  153. T.H. Shin, Y. Choi, S. Kim, J. Cheon, Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem. Soc. Rev. 44, 4501–4516 (2015). https://doi.org/10.1039/C4CS00345D

    Article  Google Scholar 

  154. X. Yang, H. Hong, J.J. Grailer, I.J. Rowland, A. Javadi, S.A. Hurley, Y. Xiao, Y. Yang, Y. Zhang, R.J. Nickles, W. Cai, D.A. Steeber, S. Gong, cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32, 4151–4160 (2011). https://doi.org/10.1016/J.BIOMATERIALS.2011.02.006

    Article  Google Scholar 

  155. L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.-T. Lee, Z. Liu, Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. 123, 7523–7528 (2011). https://doi.org/10.1002/ANGE.201101447

    Article  Google Scholar 

  156. R. Chakravarty, H.F. Valdovinos, F. Chen, C.M. Lewis, P.A. Ellison, H. Luo, M. Elizabeth Meyerand, R.J. Nickles, W. Cai, R. Chakravarty, F. Chen, H. Luo, W. Cai, H.F. Valdovinos, C.M. Lewis, P.A. Ellison, M.E. Meyerand, R.J. Nickles, Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR imaging. Adv. Mater. 26, 5119–5123 (2014). https://doi.org/10.1002/ADMA.201401372

  157. J. Yu, A.F. Martins, C. Preihs, V. Clavijo Jordan, S. Chirayil, P. Zhao, Y. Wu, K. Nasr, G.E. Kiefer, A.D. Sherry, amplifying the sensitivity of Zinc(II) responsive MRI contrast agents by altering water exchange rates. J. Am. Chem. Soc. 137, 14173–14179 (2015). https://doi.org/10.1021/JACS.5B09158/SUPPL_FILE/JA5B09158_SI_001.PDF

  158. J.M. Perez, L. Josephson, T. O’Loughlin, D. Högemann, R. Weissleder, Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20(8), 816–820 (2002). https://doi.org/10.1038/nbt720

  159. C. Tassa, S.Y. Shaw, R. Weissleder, Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 44, 842–852 (2011). https://doi.org/10.1021/AR200084X/ASSET/IMAGES/MEDIUM/AR-2011-00084X_0001.GIF

    Article  Google Scholar 

  160. N. Lee, H. Choi, T. Hyeon, N. Lee, T. Hyeon, S.H. Choi, Nano-sized CT contrast agents. Adv. Mater. 25, 2641–2660 (2013). https://doi.org/10.1002/ADMA.201300081

    Article  Google Scholar 

  161. A.B. De Gonzalez, R.A. Kleinerman, CT scanning: is the contrast material enhancing the radiation dose and cancer risk as well as the image? Radiology 275, 627–629 (2015). https://doi.org/10.1148/RADIOL.2015150605

  162. P.F. Fitzgerald, R.E. Colborn, P.M. Edic, J.W. Lambert, A.S. Torres, P.J. Bonitatibus, B.M. Yeh, CT image contrast of high-Z elements: phantom imaging studies and clinical implications. Radiology 278, 723 (2016). https://doi.org/10.1148/RADIOL.2015150577

    Article  Google Scholar 

  163. S.B. Yu, A.D. Watson, Metal-based X-ray contrast media. Chem. Rev. 99, 2353–2377 (1999). https://doi.org/10.1021/CR980441P

    Article  Google Scholar 

  164. M.W. Galper, M.T. Saung, V. Fuster, E. Roessl, A. Thran, R. Proksa, Z.A. Fayad, D.P. Cormode, Effect of computed tomography scanning parameters on gold nanoparticle and iodine contrast. Invest. Radiol. 47, 475 (2012). https://doi.org/10.1097/RLI.0B013E3182562AB9

    Article  Google Scholar 

  165. H. Choudhury, R. Cary, Concise international chemical assessment document 33: barium and barium compounds. IPCS Concise Int. Chem. Assess. Doc. (2001)

    Google Scholar 

  166. F. Stacul, A.J. Van Der Molen, P. Reimer, J.A.W. Webb, H.S. Thomsen, S.K. Morcos, T. Almén, P. Aspelin, M.F. Bellin, O. Clement, G. Heinz-Peer, Contrast induced nephropathy: updated ESUR contrast media safety committee guidelines. Eur. Radiol. 21, 2527–2541 (2011). https://doi.org/10.1007/S00330-011-2225-0/TABLES/3

    Article  Google Scholar 

  167. J.H. Hubbell, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. NIST Stand. Ref. Database 126, 21–22 (2004). https://www.osti.gov/biblio/76335. Accessed 8 Aug 2022

  168. J.F. Hainfeld, D.N. Slatkin, T.M. Focella, H.M. Smilowitz, Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol. 79, 248–253 (2006). https://doi.org/10.1259/bjr/13169882

    Article  Google Scholar 

  169. D. Kim, S. Park, H.L. Jae, Y.J. Yong, S. Jon, Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 129, 7661–7665 (2007). https://doi.org/10.1021/JA071471P/SUPPL_FILE/JA071471PSI20070419_040436.PDF

    Article  Google Scholar 

  170. J. Mann, Nature’s Building Blocks: An A-Z Guide to the Elements (John Emsley, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayoub, I., Sehgal, R., Sharma, V., Sehgal, R., Swart, H.C., Kumar, V. (2023). Applications of Upconversion Nanoparticles in Bio-Imaging. In: Kumar, V., Ayoub, I., Swart, H.C., Sehgal, R. (eds) Upconversion Nanoparticles (UCNPs) for Functional Applications. Progress in Optical Science and Photonics, vol 24. Springer, Singapore. https://doi.org/10.1007/978-981-99-3913-8_15

Download citation

Publish with us

Policies and ethics