Skip to main content

Evolutionary Approaches to Explainable Machine Learning

  • Chapter
  • First Online:
Handbook of Evolutionary Machine Learning

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

Machine learning models are increasingly being used in critical sectors, but their black-box nature has raised concerns about accountability and trust. The field of explainable artificial intelligence (XAI) or explainable machine learning (XML) has emerged in response to the need for human understanding of these models. Evolutionary computing, as a family of powerful optimization and learning tools, has significant potential to contribute to XAI/XML. In this chapter, we provide a brief introduction to XAI/XML and review various techniques in current use for explaining machine learning models. We then focus on how evolutionary computing can be used in XAI/XML, and review some approaches which incorporate EC techniques. We also discuss some open challenges in XAI/XML and opportunities for future research in this field using EC. Our aim is to demonstrate that evolutionary computing is well-suited for addressing current problems in explainability and to encourage further exploration of these methods to contribute to the development of more transparent, trustworthy, and accountable machine learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adel, T., Ghahramani, Z., Weller, A.: Discovering interpretable representations for both deep generative and discriminative models. In: Proceedings of the 35th International Conference on Machine Learning, pp. 50–59. PMLR (July 2018)

    Google Scholar 

  2. Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.-J., Srivastava, M.B., Chang, K.-W.: Generating natural language adversarial examples. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 3 Oct–4 Nov 2018, pp. 2890–2896. Association for Computational Linguistics (2018)

    Google Scholar 

  3. Arias-Duart, A., Parés, F., Garcia-Gasulla, D., Gimenez-Abalos, V.: Focus! rating XAI methods and finding biases. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2022, Padua, Italy, 18–23 July 2022, pp. 1–8. IEEE (2022)

    Google Scholar 

  4. Bacardit, J., Brownlee, A.E.I., Cagnoni, S., Iacca, G., McCall, J., Walker, D.: The intersection of evolutionary computation and explainable AI. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO’22, pp. 1757–1762, New York, NY, USA, July 2022. Association for Computing Machinery (2022)

    Google Scholar 

  5. Bommasani, R., Hudson, D.A., Adeli, E., Altman, R.B., Arora, S., von Arx, S., Bernstein, M.S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N.S., Chen, A.S., Creel, K., Quincy Davis, J., Demszky, D., Donahue, C., Doumbouya, M., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh, K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L., Goel, K., Goodman, N.D., Grossman, S., Guha, N., Hashimoto, T., Henderson, P., Hewitt, J., Ho, D.E., Hong, J., Hsu, K., Huang, J., Icard, T., Jain, S., Jurafsky, D., Kalluri, P., Karamcheti, S., Keeling, G., Khani, F., Khattab, O., Koh, P.W., Krass, M.S., Krishna, R., Kuditipudi, R., et al.: On the opportunities and risks of foundation models (2021). arXiv:2108.07258

  6. Breiman, L.: Random forest. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  7. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’06, pp. 535–541, New York, NY, USA, Aug 2006. Association for Computing Machinery (2006)

    Google Scholar 

  8. Cano, A., Ventura, S., Cios, K.J.: Multi-objective genetic programming for feature extraction and data visualization. Soft. Comput. 21(8), 2069–2089 (2017). April

    Article  Google Scholar 

  9. Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual explanations. In: Bäck, T., Preuss, M., Deutz, A., Wang, H., Doerr, C., Emmerich, M., Trautmann, H. (eds.) Parallel Problem Solving from Nature–PPSN XVI. Lecture Notes in Computer Science, pp. 448–469, Cham, 2020. Springer International Publishing (2020)

    Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Google Scholar 

  11. Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R., Patel, P., Qian, B., Wen, Z., Shah, T., Morgan, G., Ranjan, R.: Explainable AI (XAI): core ideas, techniques, and solutions. ACM Comput. Surv 55(9), 194:1–194:33 (2023)

    Google Scholar 

  12. Evans, B.P., Xue, B., Zhang, M.: What’s inside the black box? A genetic programming method for interpreting complex machine learning models. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 1012–1020 (2019)

    Google Scholar 

  13. Ferreira, L.A., Guimarães, F.G., Silva., R.: Applying genetic programming to improve interpretability in machine learning models. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2020)

    Google Scholar 

  14. Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.: Local Rule-Based Explanations of Black Box Decision Systems (2018). CoRR, arXiv:1805.10820

  15. Hancer, E., Xue, B., Zhang, M.: A survey on feature selection approaches for clustering. Artif. Intell. Rev. 53(6), 4519–4545 (2020)

    Article  Google Scholar 

  16. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer (2001)

    Google Scholar 

  17. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015). CoRR, arXiv:1503.02531

  18. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1933)

    Article  MATH  Google Scholar 

  19. Ting, H.: Can genetic programming perform explainable machine learning for bioinformatics? In: Genetic Programming Theory and Practice XVII. Springer (2020)

    Google Scholar 

  20. Hu, T., Oksanen, K., Zhang, W., Randell, E., Furey, A., Sun, G., Zhai, G.: An evolutionary learning and network approach to identifying key metabolites for osteoarthritis. PLoS Comput. Biol. 14(3), e1005986 (2018)

    Google Scholar 

  21. Huang, W., Zhao, X., Jin, G., Huang, X.: SAFARI: versatile and efficient evaluations for robustness of interpretability (2022). CoRR, arXiv:2208.09418

  22. Icke, I., Rosenberg, A.: Multi-objective genetic programming for visual analytics. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) Genetic Programming. Lecture Notes in Computer Science, pp. 322–334. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  23. Karimi, A.-H., Barthe, G., Schölkopf, B., Valera, I.: A survey of algorithmic recourse: Definitions, formulations, solutions, and prospects (2020). CoRR, arXiv:2010.04050

  24. Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Found. Trends Mach. Learn. 5(2–3), 123–286 (2012)

    Article  MATH  Google Scholar 

  25. La Cava, W., Moore, J.H.: Learning feature spaces for regression with genetic programming. Genet. Program Evolvable Mach. 21(3), 433–467 (2020). September

    Article  Google Scholar 

  26. Lakkaraju, H., Kamar, E., Caruana, R., Leskovec, J.: Interpretable & explorable approximations of black box models (2017). CoRR, arXiv:1707.01154

  27. Lensen, A., Xue, B., Zhang, M.: Genetic programming for evolving a front of interpretable models for data visualization. IEEE Trans. Cybern. 51(11), 5468–5482 (2021)

    Article  Google Scholar 

  28. Li, R., Emmerich, M.T.M., Eggermont, J., Bäck, T., Schütz, M., Dijkstra, J., Reiber, J.H.C.: Mixed integer evolution strategies for parameter optimization. Evol. Comput. 21(1), 29–64 (2013)

    Google Scholar 

  29. Li, Z., He, J., Zhang, X., Fu, H., Qin, J.: Toward high accuracy and visualization: an interpretable feature extraction method based on genetic programming and non-overlap degree. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 299–304 (2020)

    Google Scholar 

  30. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43 (2018)

    Article  Google Scholar 

  31. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), pp. 4768–4777 (2017)

    Google Scholar 

  32. Mahendran, A., Vedaldi, A.: Visualizing deep convolutional neural networks using natural pre-images. Int. J. Comput. Vision 120(3), 233–255 (2016). December

    Article  MathSciNet  Google Scholar 

  33. Mei, Y., Chen, Q., Lensen, A., Xue, B., Zhang, M.: Explainable artificial intelligence by genetic programming: a survey. IEEE Trans. Evol. Comput. 1–1 (2022)

    Google Scholar 

  34. Molnar, C.: Interpretable Machine Learning: A Guide for Making Black Box Models Explainable (2022). leanpub.com

    Google Scholar 

  35. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual examples. In: ACM Conference on Fairness, Accountability, and Transparency (Jan 2020)

    Google Scholar 

  36. Muharram, M., Smith, G.D.: Evolutionary constructive induction. IEEE Trans. Knowl. Data Eng. 17(11), 1518–1528 (2005). November

    Article  Google Scholar 

  37. Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Interpretable machine learning: definitions, methods, and applications. Proc. Natl. Acad. Sci. 116(44), 22071–22080 (2019)

    Google Scholar 

  38. Nguyen, B.H., Xue, B., Zhang, M.: A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol. Comput. 54, 100663 (2020)

    Google Scholar 

  39. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Google Scholar 

  40. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  41. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019)

    Article  Google Scholar 

  42. Saeed, W., Omlin, C.: Explainable AI (XAI): a systematic meta-survey of current challenges and future opportunities. Knowl. Based Syst. 263, 110273 (2023). March

    Article  Google Scholar 

  43. Samek, W., Montavon, G., Lapuschkin, S., Anders, C.J., Müller, K.-R.: Explaining deep neural networks and beyond: a review of methods and applications. Proc. IEEE 109(3), 247–278 (2021)

    Article  Google Scholar 

  44. Sayed, S., Nassef, M., Badr, A., Farag, I.: A Nested Genetic Algorithm for feature selection in high-dimensional cancer Microarray datasets. Expert Syst. Appl. 121, 233–243 (2019). May

    Article  Google Scholar 

  45. Schleich, M., Geng, Z., Zhang, Y., Suciu, D.: GeCo: quality counterfactual explanations in real time. Proc. VLDB Endow. 14(9), 1681–1693 (2021). May

    Article  Google Scholar 

  46. Schofield, F., Lensen, A.: Using genetic programming to find functional mappings for UMAP embeddings. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 704–711 (June 2021)

    Google Scholar 

  47. Seyyed-Kalantari, L., Zhang, H., McDermott, M.B.A., Chen, I.Y., Ghassemi, M.: Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27(12), 2176–2182 (2021)

    Google Scholar 

  48. Sha, C., Cuperlovic-Culf, M., Ting, H.: SMILE: systems metabolomics using interpretable learning and evolution. BMC Bioinform. 22, 284 (2021)

    Article  Google Scholar 

  49. Sha, Z., Hu, T., Chen, Y.: Feature selection for polygenic risk scores using genetic algorithm and network science. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 802–808 (June 2021)

    Google Scholar 

  50. Sharma, S., Henderson, J., Ghosh, J.: CERTIFAI: a common framework to provide explanations and analyse the fairness and robustness of black-box models. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 166–172, New York NY USA, Feb 2020. ACM (2020)

    Google Scholar 

  51. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 23(5), 828–841 (2019)

    Google Scholar 

  52. Tamam, S.V., Lapid, R., Sipper, M.: Foiling explanations in deep neural networks (2022). CoRR, arXiv:2211.14860

  53. Uriot, T., Virgolin, M., Alderliesten, T., Bosman, P.A.N.: On genetic programming representations and fitness functions for interpretable dimensionality reduction. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’22, pp. 458–466, New York, NY, USA, July 2022. Association for Computing Machinery (2022)

    Google Scholar 

  54. van der Maaten, L., Hinton, G.: Visualizing Data using t-SNE. J. Mach. Learn. Res. 9(86), 2579–2605 (2008)

    MATH  Google Scholar 

  55. Virgolin, M., Alderliesten, T., Bosman, P.A.N.: On explaining machine learning models by evolving crucial and compact features. Swarm Evol. Comput. 53, 100640 (2020)

    Google Scholar 

  56. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. JL & Tech. 31, 841 (2017)

    Google Scholar 

  57. Wang, B., Pei, W., Xue, B., Zhang, M.: A multi-objective genetic algorithm to evolving local interpretable model-agnostic explanations for deep neural networks in image classification. IEEE Trans. Evol. Comput. 1–1 (2022)

    Google Scholar 

  58. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016). August

    Article  Google Scholar 

  59. Xue, Yu., Tang, Y., Xin, X., Liang, J., Neri, F.: Multi-objective feature selection with missing data in classification. IEEE Trans. Emerg. Top. Comput. Intell. 6(2), 355–364 (2022). April

    Article  Google Scholar 

  60. Xue, Y., Xue, B., Zhang, M.: Self-adaptive particle swarm optimization for large-scale feature selection in classification. ACM Trans. Knowl. Discov. Data 13(5), 50:1–50:27 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, R., Hu, T. (2024). Evolutionary Approaches to Explainable Machine Learning. In: Banzhaf, W., Machado, P., Zhang, M. (eds) Handbook of Evolutionary Machine Learning. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-99-3814-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3814-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3813-1

  • Online ISBN: 978-981-99-3814-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics