Skip to main content

Numerical Modelling of Historical Masonry Structures with the Finite Element Code NOSA-ITACA

  • Conference paper
  • First Online:
Mathematical Modeling in Cultural Heritage (MACH 2021)

Abstract

This chapter presents the finite element code NOSA-ITACA for static and modal analyses of masonry structures of architectural interest. NOSA-ITACA adopts the constitutive equation of masonry-like materials, which considers masonry a nonlinear elastic material with zero tensile strength. The capability of modelling restoration and consolidation operations makes the code a helpful tool for maintaining historical buildings. In recent years, long-term vibration monitoring turned out to be an effective non-destructive technique to investigate the dynamic behaviour and check the health status of historical buildings. Changes in their dynamic properties, such as natural frequencies, can represent effective damage indicators. The latest NOSA-ITACA developments are oriented towards structural health monitoring. The availability of the experimental modal properties of a structure makes it possible to calibrate its finite element model via model updating procedures. In particular, the unknown structure’s characteristics, such as materials’ properties and boundary conditions, can be determined by solving a minimum problem whose objective function is expressed as the discrepancy between experimental frequencies and mode shapes and their numerical counterparts. Several case studies are presented to show the main features of NOSA-ITACA and its effectiveness in the conservation of architectural heritage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A body is a regular region of the three-dimensional Euclidean space having boundary \(\partial \mathcal {B}\), with outward unit normal \(\mathbf {n}\) [17].

References

  1. Binante, V., Girardi, M., Padovani, C., Pasquinelli, G., Pellegrini, D., Porcelli, M., Robol, L.: NOSA-ITACA 1.1 documentation 2017. http://www.nosaitaca.it

  2. http://projects.ce.berkeley.edu/feap/

  3. https://www.code-aster.org

  4. http://opensees.berkeley.edu/

  5. Girardi, M., Padovani, C., Pellegrini, D.: The NOSA-ITACA code for the safety assessment of ancient constructions: a case study in Livorno. Adv. Eng. Softw. 89, 64–76 (2015)

    Article  Google Scholar 

  6. Porcelli, M., Binante, V., Girardi, M., Padovani, C., Pasquinelli, G.: A solution procedure for constrained eigenvalue problems and its application within the structural finite-element code NOSA–ITACA. Calcolo 52(2), 167–186 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Girardi, M., Padovani, C., Pellegrini, D., Porcelli, M. Robol, L.: Finite element model updating for structural applications. J. Comput. Appl. Math. 370, 112675 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. http://www.salome-platform.org

  9. Del Piero, G.: Constitutive equations and compatibility of external loads for linear elastic masonry–like materials. Meccanica 24, 150–162 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Di Pasquale, S.: New trends in the analysis of masonry structures. Meccanica 27, 173–184 (1992)

    Article  MATH  Google Scholar 

  11. Lucchesi, M., Padovani, C., Pasquinelli, G., Zani, N.: Masonry Constructions: Mechanical Models and Numerical Applications. Lecture Notes in Applied and Computational Mechanics. Springer (2008)

    Book  MATH  Google Scholar 

  12. Girardi, M., Padovani, C., Pasquinelli, G.: Numerical modelling of the static and seismic behaviour of historical buildings: the church of San Francesco in Lucca. In: Topping, B.H.V., Ivanyi, P. (eds.) Proceedings of CC2013 - Fourteenth International Conference on Civil. Structural and Environmental Engineering Computing n. 80 (2013)

    Google Scholar 

  13. Girardi, M. Padovani, C., Pellegrini, D.: Modal analysis of masonry structures. Math. Mech. Solids 24(3), 616–636 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heyman, J.: The stone skeleton. Int. J. Solids Struct. 2(2), 249–279 (1966)

    Article  Google Scholar 

  15. Brezis H.: Analyse fonctionnelle - théorie et applications. Masson Editeur, Paris (1983)

    MATH  Google Scholar 

  16. Padovani C., Silhavy M.: On the derivative of the stress-strain relation in a no-tension material. Math. Mech. Solids 22(7), 1606–1618 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gurtin M.E.: The linear theory of elasticity. In: Truesdell, C. (ed.) Encyclopedia of Physics, Vol. VIa/2, Mechanics of Solids II. Springer (1972)

    Google Scholar 

  18. Guidi, C.: Influenza della temperatura sulle costruzioni murarie. Atti della Reale Accademia delle Scienze di Torino 41, 319–330 (1906)

    Google Scholar 

  19. Taliercio, A., Binda, L.: The Basilica of San Vitale in Ravenna: Investigation on the current structural faults and their mid-term evolution. J. Cult. Herit. 8, 99–118 (2008)

    Article  Google Scholar 

  20. Blasi, C., Coisson, E.: The effects of temperature on historical stone masonry structures. Structural Analysis of Historic Construction: Preserving Safety and Significance—Proceedings of the 6th International Conference on Structural Analysis of Historic Construction, 2, SAHC08, 1271–1276 (2008)

    Google Scholar 

  21. Talebinejad, I., Fischer, I., Ansari, F.: A hybrid approach for safety assessment of the double span masonry vaults of the Brooklyn Bridge. J. Civil Struct. Health Monit. 1(1–2) 3–15 (2011)

    Article  Google Scholar 

  22. Anzellotti, G.: A class of convex non-coercive functionals and masonry-like materials. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 2(4), 261–307 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Giaquinta, M., Giusti, E.: Researches on the equilibrium of masonry structures. Arch. Rational Mech. Anal. 88(4), 359–392 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Silhavy, M.: Mathematics of the masonry-like model and limit analysis. In: Angelillo, M. (ed.) Mechanics of Masonry Structures. International Centre for Mechanical Sciences Courses and Lectures, vol. 551, pp. 29–69 (2014)

    Article  Google Scholar 

  25. Lucchesi, M.: A numerical method for solving BVP of masonry-like solids. In: Angelillo, M. (ed.) Mechanics of Masonry Structures. International Centre for Mechanical Sciences Courses and Lectures, vol. 551, pp. 71–104 (2014)

    Article  Google Scholar 

  26. Irons, B.M.: A frontal solution program for finite element analysis. Int. J. Numer. Methods Eng. 2(1), 5–32 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  28. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)

    Google Scholar 

  29. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users Guide. Solution of Large Scale Eigenvalue Problem with Implicit Restarted Arnoldi Methods. SIAM (1998)

    Book  MATH  Google Scholar 

  30. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: MUMPS: A General Purpose Distributed Memory Sparse Solver. Lecture Notes in Computer Science, pp. 121–130 (2001)

    Google Scholar 

  31. D.M. 14 gennaio 2008, Norme Tecniche per le Costruzioni, G.U. 4 febbraio 2008, n. 29

    Google Scholar 

  32. Circolare 2 febbraio 2009, n. 617, C.S.LL.PP, Istruzioni per l’applicazione delle nuove norme tecniche per le costruzioni di cui al D.M: 14 gennaio 2008

    Google Scholar 

  33. Direttiva del Presidente del Consiglio dei Ministri del 9 febbraio 2011: Valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle Norme Tecniche per le Costruzioni di cui al D. M. 14 gennaio 2008. G.U. n. 47 del 26 febbraio 2011 - Suppl. ord. N. 54

    Google Scholar 

  34. Azzara, R. M., De Falco, A., Girardi, M., Pellegrini, D.: Ambient vibration recording on the Maddalena Bridge in Borgo a Mozzano (Italy): data analysis. Ann. Geophys. 60(4), S0441 (2017)

    Article  Google Scholar 

  35. Marc 2014 Volume A: theory and user information. Marc and Mentat Docs (2014)

    Google Scholar 

  36. CSI Analysis Reference Manual For SAP2000®. ETABS, SAFE and CSiBridge, Berkeley, California, USA, December 2011

    Google Scholar 

  37. Brincker R., Ventura C.: Introduction to Operational Modal Analysis. John Wiley & Sons (2015)

    Google Scholar 

  38. Friswell, M., Mottershead, J. E.: Finite Element Model Updating in Structural Dynamics, vol. 38. Springer Science and Business Media (2013)

    Google Scholar 

  39. Girardi, M., Padovani, C., Pellegrini, D. Robol, L.: Model updating procedure to enhance structural analysis in FE code NOSA-ITACA. J. Perform. Constr. Facil. 33(4). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001303 (2019)

  40. Girardi, M., Padovani, C., Pellegrini, D., Robol, L.: A finite element model updating method based on global optimization. Mech. Syst. Signal Process. 152, 107372 (2021)

    Article  Google Scholar 

  41. Azzara, R.M., De Roeck, G., Girardi, M., Padovani, C., Pellegrini, D., Reynders, E.: The influence of environmental parameters on the dynamic behaviour of the San Frediano bell tower in Lucca. Eng. Struct. 156, 175–187 (2018)

    Article  Google Scholar 

  42. Gentile, C., Guidobaldi, M., Saisi, A.: One-year dynamic monitoring of a historic tower: damage detection under changing environment. Meccanica 51(11), 2873–2889 (2016)

    Article  Google Scholar 

  43. Ramos, L.F., Marques, L., Lourenço, P.B., De Roeck, G., Campos-Costa, A., Roque, J.: Monitoring historical masonry structures with operational modal analysis: two case studies. Mech. Syst. Signal Process. 24(5), 1291–1305 (2010)

    Article  Google Scholar 

  44. Azzara, R.M., Girardi, M., Padovani, C., Pellegrini, D.: Experimental and numerical investigations on the seismic behaviour of the San Frediano bell tower. Ann. Geophys. 62(3), SE342 (2019)

    Google Scholar 

Download references

Acknowledgements

The development of NOSA-ITACA has been partially funded by the Region of Tuscany within the framework of projects NOSA-ITACA (PAR-FAS 2011-2013) and MOSCARDO (FAR-FAS 2016-2018). This financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Padovani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Girardi, M., Padovani, C., Pellegrini, D., Porcelli, M., Robol, L. (2023). Numerical Modelling of Historical Masonry Structures with the Finite Element Code NOSA-ITACA. In: Bretti, G., Cavaterra, C., Solci, M., Spagnuolo, M. (eds) Mathematical Modeling in Cultural Heritage. MACH 2021. Springer INdAM Series, vol 55. Springer, Singapore. https://doi.org/10.1007/978-981-99-3679-3_9

Download citation

Publish with us

Policies and ethics