Skip to main content

Computational Aspects: Self-clean Coatings, Plastics and Polymers in Coatings

  • Chapter
  • First Online:
Coating Materials

Abstract

Computational techniques have widely been used as a powerful tool in different sectors of polymeric coatings to predict several targeted and performance properties. Articles employing different computational methods in different coatings such as self-clean, fire-retardant, anti-icing, and anti-corrosion have been discussed in this chapter. We discuss how computational chemistry has helped in discovering novel coating materials and present an overview on different simulation techniques helped to optimize and provide fundamental insights in materials behavior. This chapter may surely help the new researchers to gain deeper insights about the capabilities of MD simulations employed in different sectors of coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matthews A, Leyland A, Stevenson P (1996) Widening the market for advanced PVD coatings. J Mater Process Technol 56:757–764. https://doi.org/10.1016/0924-0136(95)01889-1

    Article  Google Scholar 

  2. Maurya AK, Gogoi R, Sethi SK, Manik G (2021) A combined theoretical and experimental investigation of the valorization of mechanical and thermal properties of the fly ash-reinforced polypropylene hybrid composites. J Mater Sci 56:16976–16998. https://doi.org/10.1007/S10853-021-06383-2/FIGURES/10

    Article  CAS  Google Scholar 

  3. Agrawal G, Samal SK, Sethi SK, Manik G, Agrawal R (2019) Microgel/silica hybrid colloids: bioinspired synthesis and controlled release application. Polymer (Guildf) 178:121599. https://doi.org/10.1016/j.polymer.2019.121599

    Article  CAS  Google Scholar 

  4. Deji R, Jyoti R, Verma A, Choudhary BC, Sharma RK (2022) A theoretical study of HCN adsorption and width effect on co-doped armchair graphene nanoribbon. Comput Theor Chem 1209:113592

    Article  Google Scholar 

  5. Shankar U, Sethi SK, Singh BP, Kumar A, Manik G, Bandyopadhyay A (2021) Optically transparent and lightweight nanocomposite substrate of poly(methyl methacrylate-co-acrylonitrile)/MWCNT for optoelectronic applications: an experimental and theoretical insight. J Mater Sci 56:17040–17061. https://doi.org/10.1007/S10853-021-06390-3/FIGURES/17

    Article  CAS  Google Scholar 

  6. Saini A, Yadav C, Sethi SK, Xue BL, Xia Y, Li K, Manik G, Li X (2021) Microdesigned nanocellulose-based flexible antibacterial aerogel architectures impregnated with bioactive cinnamomum cassia. ACS Appl Mater Interfaces 13:4874–4885. https://doi.org/10.1021/acsami.0c20258

    Article  CAS  Google Scholar 

  7. Sethi SK, Soni L, Manik G (2018) Component compatibility study of poly(dimethyl siloxane) with poly(vinyl acetate) of varying hydrolysis content: an atomistic and mesoscale simulation approach. J Mol Liq 272:73–83. https://doi.org/10.1016/J.MOLLIQ.2018.09.048

    Article  CAS  Google Scholar 

  8. Lakhera S, Devlal K, Ghosh A, Chowdhury P, Rana M (2022) Modelling the DFT structural and reactivity study of feverfew and evaluation of its potential antiviral activity against COVID-19 using molecular docking and MD simulations. Chem Pap 76:2759–2776. https://doi.org/10.1007/S11696-022-02067-6/FIGURES/15

    Article  CAS  Google Scholar 

  9. Sureshkumar B, Mary YS, Resmi KS, Suma S, Armaković S, Armaković SJ, van Alsenoy C, Narayana B, Sobhana D (2018) Spectroscopic characterization of hydroxyquinoline derivatives with bromine and iodine atoms and theoretical investigation by DFT calculations, MD simulations and molecular docking studies. J Mol Struct 1167:95–106. https://doi.org/10.1016/J.MOLSTRUC.2018.04.077

    Article  CAS  Google Scholar 

  10. Dhiman A, Gupta A, Sethi SK, Manik G, Agrawal G (2022) Encapsulation of wax in complete silica microcapsules. J Mater Res 2022:1–14. https://doi.org/10.1557/S43578-022-00865-Y

    Article  Google Scholar 

  11. Verma A, Jain N, Sethi SK (2022) Modeling and simulation of graphene-based composites. Innov Graphene-Based Polymer Compos, 167–198. https://doi.org/10.1016/B978-0-12-823789-2.00001-7

  12. Kataria A, Verma A, Sethi SK, Ogata S (2022) Introduction to interatomic potentials/forcefields. In: Forcefields for atomistic-scale simulations: materials and applications (pp 21–49). Springer, Singapore

    Google Scholar 

  13. Sethi SK, Manik G (2021) A combined theoretical and experimental investigation on the wettability of MWCNT filled PVAc-g-PDMS easy-clean coating. Prog Org Coat 151:106092. https://doi.org/10.1016/j.porgcoat.2020.106092

    Article  CAS  Google Scholar 

  14. Sethi SK, Manik G (2018) Recent progress in super hydrophobic/hydrophilic self-cleaning surfaces for various industrial applications: a review. Polym Plast Technol Eng 57:1932–1952. https://doi.org/10.1080/03602559.2018.1447128

    Article  CAS  Google Scholar 

  15. Sethi SK, Shankar U, Manik G (2019) Fabrication and characterization of non-fluoro based transparent easy-clean coating formulations optimized from molecular dynamics simulation. Prog Org Coat 136. https://doi.org/10.1016/j.porgcoat.2019.105306

  16. Chen X, Wang M, Xin Y, Huang Y (2022) One-step fabrication of self-cleaning superhydrophobic surfaces: a combined experimental and molecular dynamics study. Surfaces and Interfaces. 31:102022. https://doi.org/10.1016/J.SURFIN.2022.102022

    Article  CAS  Google Scholar 

  17. Sethi SK, Kadian S, Manik G (2022) A review of recent progress in molecular dynamics and coarse-grain simulations assisted understanding of wettability. Arch Comput Methods Eng 2021(1):1–27. https://doi.org/10.1007/S11831-021-09689-1

    Article  Google Scholar 

  18. Sethi SK, Singh M, Manik G (2020) A multi-scale modeling and simulation study to investigate the effect of roughness of a surface on its self-cleaning performance. Mol Syst Des Eng 5:1277–1289. https://doi.org/10.1039/d0me00068j

    Article  CAS  Google Scholar 

  19. Kumar G, Mishra RR, Verma A (2022) Introduction to molecular dynamics simulations. In: Forcefields for atomistic-scale simulations: materials and applications (pp 1–19). Springer, Singapore. https://doi.org/10.1007/978-981-19-3092-8_1

  20. Daneshmand H, Sazgar A, Araghchi M (2021) Fabrication of robust and versatile superhydrophobic coating by two-step spray method: An experimental and molecular dynamics simulation study. Appl Surf Sci 567:150825. https://doi.org/10.1016/J.APSUSC.2021.150825

    Article  CAS  Google Scholar 

  21. Sethi SK, Shankar U, Manik G (2019) Fabrication and characterization of non-fluoro based transparent easy-clean coating formulations optimized from molecular dynamics simulation. Prog Org Coat 136:105306. https://doi.org/10.1016/j.porgcoat.2019.105306

    Article  CAS  Google Scholar 

  22. Sethi SK, Manik G, Sahoo SK (2019) Fundamentals of superhydrophobic surfaces. In: Superhydrophobic polymer coatings, Elsevier, pp 3–29. https://linkinghub.elsevier.com/retrieve/pii/B9780128166710000011. Accessed August 29, 2019

  23. Sethi SK, Gogoi R, Verma A, Manik G (2022) How can the geometry of a rough surface affect its wettability?—a coarse-grained simulation analysis. Prog Org Coat 172:107062. https://doi.org/10.1016/J.PORGCOAT.2022.107062

    Article  CAS  Google Scholar 

  24. Sethi SK, Soni L, Shankar U, Chauhan RP, Manik G (2020) A molecular dynamics simulation study to investigate poly(vinyl acetate)-poly(dimethyl siloxane) based easy-clean coating: an insight into the surface behavior and substrate interaction. J Mol Struct 1202:127342. https://doi.org/10.1016/j.molstruc.2019.127342

    Article  CAS  Google Scholar 

  25. Sethi SK, Kadian S, Goel A, Chauhan RP, Manik G (2020) Fabrication and analysis of ZnO quantum dots based easy clean coating: a combined theoretical and experimental investigation. ChemistrySelect. 5: 8942–8950. https://doi.org/10.1002/slct.202001092

  26. Hautman J, Klein ML (1991) Microscopic wetting phenomena. Phys Rev Lett 67:1763–1766. https://doi.org/10.1103/PhysRevLett.67.1763

    Article  CAS  Google Scholar 

  27. Moradi M, Rezaei M (2022) Long-term experimental evaluation and molecular dynamics simulation of polypropylene/graphene oxide nanocomposite coating in 3.5 wt% NaCl solution. Prog Org Coat. 164:106718. https://doi.org/10.1016/J.PORGCOAT.2022.106718

  28. Vaari J, Paajanen A (2018) Evaluation of the reactive molecular dynamics method for research on flame retardants: ATH-filled polyethylene. Comput Mater Sci 153:103–112. https://doi.org/10.1016/j.commatsci.2018.06.032

    Article  CAS  Google Scholar 

  29. Qiong S, Yanbin W, Li L, Junxi L (2019) Simulation investigation on flame retardancy of the PVAc/ATP nanocomposite. J Chem 2019. https://doi.org/10.1155/2019/3041097

  30. Chen TBY, Yuen ACY, Lin B, Liu L, Lo ALP, Chan QN, Zhang J, Cheung SCP, Yeoh GH (2020) Characterisation of pyrolysis kinetics and detailed gas species formations of engineering polymers via reactive molecular dynamics (ReaxFF). J Anal Appl Pyrolysis, 153. https://doi.org/10.1016/j.jaap.2020.104931

  31. Sangkhawasi M, Remsungnen T, Vangnai AS, Poo-Arporn RP, Rungrotmongkol T (2022) All-atom molecular dynamics simulations on a single chain of PET and PEV polymers. Polymers (Basel). 14. https://doi.org/10.3390/polym14061161

  32. Saeb MR, Rastin H, Shabanian M, Ghaffari M, Bahlakeh G (2017) Cure kinetics of epoxy/β-cyclodextrin-functionalized Fe3O4 nanocomposites: experimental analysis, mathematical modeling, and molecular dynamics simulation. Prog Org Coat 110:172–181. https://doi.org/10.1016/j.porgcoat.2017.05.007

    Article  CAS  Google Scholar 

  33. Haris NIN, Sobri S, Yusof YA, Kassim NK (2021) An overview of molecular dynamic simulation for corrosion inhibition of ferrous metals. Metals 11:46. 11 (2020) 46. https://doi.org/10.3390/MET11010046

  34. Douche D, Elmsellem H, Anouar EH, Guo L, Hafez B, Tüzün B, el Louzi A, Bougrin K, Karrouchi K, Himmi B (2020) Anti-corrosion performance of 8-hydroxyquinoline derivatives for mild steel in acidic medium: Gravimetric, electrochemical. DFT Molecular Dyn Simul Invest J Mol Liq 308:113042. https://doi.org/10.1016/J.MOLLIQ.2020.113042

    Article  CAS  Google Scholar 

  35. Madani A, Sibous L, Hellal A, Kaabi I, Bentouhami E (2021) Synthesis, density functional theory study, molecular dynamics simulation and anti-corrosion performance of two benzidine Schiff bases. J Mol Struct 1235:130224. https://doi.org/10.1016/J.MOLSTRUC.2021.130224

    Article  CAS  Google Scholar 

  36. Shen Y, Li K, Chen H, Wu Z, Wang Z (2021) Superhydrophobic F-SiO2@PDMS composite coatings prepared by a two-step spraying method for the interface erosion mechanism and anti-corrosive applications. Chem Eng J 413:127455. https://doi.org/10.1016/J.CEJ.2020.127455

    Article  CAS  Google Scholar 

  37. Keshmiri N, Najmi P, Ramezanzadeh M, Ramezanzadeh B, Bahlakeh G (2022) Ultrastable porous covalent organic framework assembled carbon nanotube as a novel nanocontainer for anti-corrosion coatings: experimental and computational studies. ACS Appl Mater Interfaces 14:19958–19974. https://doi.org/10.1021/ACSAMI.1C24185/ASSET/IMAGES/LARGE/AM1C24185_0009.JPEG

    Article  CAS  Google Scholar 

  38. Moradi M, Rezaei M (2022) Construction of highly anti-corrosion and super-hydrophobic polypropylene/graphene oxide nanocomposite coatings on carbon steel: experimental, electrochemical and molecular dynamics studies. Constr Build Mater 317:126136. https://doi.org/10.1016/J.CONBUILDMAT.2021.126136

    Article  CAS  Google Scholar 

  39. Dagdag O, Berisha A, Safi Z, Hamed O, Jodeh S, Verma C, Ebenso EE, el Harfi A (2020) DGEBA-polyaminoamide as effective anti-corrosive material for 15CDV6 steel in NaCl medium: computational and experimental studies. J Appl Polym Sci 137:48402. https://doi.org/10.1002/APP.48402

    Article  CAS  Google Scholar 

  40. Bahlakeh G, Ramezanzadeh B, Ramezanzadeh M (2019) The role of chrome and zinc free-based neodymium oxide nanofilm on adhesion and corrosion protection properties of polyester/melamine coating on mild steel: experimental and molecular dynamics simulation study. J Clean Prod 210:872–886. https://doi.org/10.1016/J.JCLEPRO.2018.11.089

    Article  CAS  Google Scholar 

  41. el Arrouji S, Karrouchi K, Berisha A, Ismaily Alaoui K, Warad I, Rais Z, Radi S, Taleb M, Ansar M, Zarrouk A (2020) New pyrazole derivatives as effective corrosion inhibitors on steel-electrolyte interface in 1 M HCl: Electrochemical, surface morphological (SEM) and computational analysis. Colloids Surf A Physicochem Eng Asp. 604, 125325. https://doi.org/10.1016/J.COLSURFA.2020.125325

  42. Sun Q, Zhao Y, Choi KS, Mao X (2021) Molecular dynamics simulation of thermal de-icing on a flat surface. Appl Therm Eng 189:116701. https://doi.org/10.1016/J.APPLTHERMALENG.2021.116701

    Article  CAS  Google Scholar 

  43. Zhuo Y, Xiao S, Håkonsen V, He J, Zhang Z (2020) Anti-icing Ionogel surfaces: inhibiting ice nucleation, growth, and adhesion, ACS. Mater Lett 2:616–623. https://doi.org/10.1021/ACSMATERIALSLETT.0C00094/SUPPL_FILE/TZ0C00094_SI_006.MP4

    Article  CAS  Google Scholar 

  44. Rønneberg S, Xiao S, He J, Zhang Z (2020) nanoscale correlations of ice adhesion strength and water contact angle. Coatings 10:379. 10, 379. https://doi.org/10.3390/COATINGS10040379

  45. Xiao S, He J, Zhang Z (2016) Nanoscale deicing by molecular dynamics simulation. Nanoscale 8:14625–14632. https://doi.org/10.1039/C6NR02398C

    Article  CAS  Google Scholar 

  46. Jiang J, Sheng Q, Tang GH, Yang MY, Guo L (2022) Anti-icing propagation and icephobicity of slippery liquid-infused porous surface for condensation frosting. Int J Heat Mass Transf 190:122730. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2022.122730

    Article  CAS  Google Scholar 

  47. Li N, Jiang J, Yang MY, Wang H, Ma Y, Li Z, Tang GH (2023) Anti-icing mechanism of combined active ethanol spraying and passive surface wettability. Appl Therm Eng 220:119805. https://doi.org/10.1016/J.APPLTHERMALENG.2022.119805

    Article  CAS  Google Scholar 

  48. Bao L, Huang Z, Priezjev Nv, Chen S, Luo K, Hu H (2018) A significant reduction of ice adhesion on nanostructured surfaces that consist of an array of single-walled carbon nanotubes: a molecular dynamics simulation study. Appl Surf Sci 437:202–208. https://doi.org/10.1016/J.APSUSC.2017.12.096

  49. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477. https://doi.org/10.1021/NP068054V/SUPPL_FILE/NP068054V_SA.PDF

    Article  CAS  Google Scholar 

  50. Sangeetha B, Krishnamoorthy AS, Sharmila DJS, Renukadevi P, Malathi VG, Amirtham D (2021) Molecular modelling of coat protein of the Groundnut bud necrosis tospovirus and its binding with Squalene as an antiviral agent: In vitro and in silico docking investigations. Int J Biol Macromol 189:618–634. https://doi.org/10.1016/J.IJBIOMAC.2021.08.143

    Article  CAS  Google Scholar 

  51. Shivanika C, Deepak Kumar S, Ragunathan V, Tiwari P, Sumitha A, Brindha Devi P (2020) Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn 40:1. https://doi.org/10.1080/07391102.2020.1815584

  52. Sahihi M, Faraudo J (2022) Computer simulation of the interaction between SARS-CoV-2 spike protein and the surface of coinage metals, langmuir.https://doi.org/10.1021/acs.langmuir.2c02120

  53. Singh MB, Sharma R, Kumar D, Khanna P, Mansi, Khanna L, Kumar V, Kumari K, Gupta A, Chaudhary P, Kaushik N, Choi EH, Kaushik NK, Singh P (2022) An understanding of coronavirus and exploring the molecular dynamics simulations to find promising candidates against the Mpro of nCoV to combat the COVID-19: a systematic review. J Infect Public Health 15:1326–1349. https://doi.org/10.1016/J.JIPH.2022.10.013

  54. Kushwaha PP, Singh AK, Bansal T, Yadav A, Prajapati KS, Shuaib M, Kumar S (2021) Identification of natural inhibitors against SARS-CoV-2 drugable targets using molecular docking. Molecular Dyn Simul MM-PBSA Approach Front Cell Infect Microbiol 11:728. https://doi.org/10.3389/FCIMB.2021.730288/BIBTEX

    Article  Google Scholar 

  55. Casalino L, Dommer AC, Gaieb Z, Barros EP, Sztain T, Ahn SH, Trifan A, Brace A, Bogetti AT, Clyde A, Ma H, Lee H, Turilli M, Khalid S, Chong LT, Simmerling C, Hardy DJ, Maia JDC, Phillips JC, Kurth T, Stern AC, Huang L, McCalpin JD, Tatineni M, Gibbs T, Stone JE, Jha S, Ramanathan A, Amaro RE (2021) AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics. Int J High Perform Comput Appl 35:432–451. https://doi.org/10.1177/10943420211006452/ASSET/IMAGES/LARGE/10.1177_10943420211006452-FIG2.JPEG

    Article  Google Scholar 

  56. Kataria A, Verma A, Sanjay MR, Siengchin S (2022) Molecular modeling of 2D graphene grain boundaries: mechanical and fracture aspects. Materials Today: Proc 52:2404–2408

    CAS  Google Scholar 

  57. Bharath KN, Madhu P, Gowda TY, Verma A, Sanjay MR, Siengchin S (2021) Mechanical and chemical properties evaluation of sheep wool fiber–reinforced vinylester and polyester composites. Materials Performance Characterization 10(1):99–109

    Article  CAS  Google Scholar 

  58. Verma A, Parashar A, Jain N, Singh VK, Rangappa SM, Siengchin S (2020) Surface modification techniques for the preparation of different novel biofibers for composites. In: Biofibers and biopolymers for biocomposites (pp 1–34). Springer, Cham

    Google Scholar 

  59. Verma A, Singh VK (2016) Experimental investigations on thermal properties of coconut shell particles in DAP solution for use in green composite applications. J Mater Sci Eng 5(3):1000242

    Google Scholar 

  60. Singh K, Jain N, Verma A, Singh VK, Chauhan S (2020) Functionalized graphite–reinforced cross-linked poly (vinyl alcohol) nanocomposites for vibration isolator application: Morphology, mechanical, and thermal assessment. Mater Performance Characterization 9(1):215–230

    Google Scholar 

  61. Verma A, Singh VK, Arif M (2016) Study of flame retardant and mechanical properties of coconut shell particles filled composite. Res Rev J Mater Sci 4(3):1–5

    Google Scholar 

  62. Verma A, Jain N, Rastogi S, Dogra V, Sanjay SM, Siengchin S, Mansour R (2020) Mechanism, anti-corrosion protection and components of anti-corrosion polymer coatings. In: Polymer coatings (pp 53–66). CRC Press

    Google Scholar 

  63. Chaudhary A, Sharma S, Verma A (2022) WEDM machining of heat treated ASSAB’88 tool steel: a comprehensive experimental analysis. Mater Today: Proc 50:946–951

    CAS  Google Scholar 

  64. Bisht N, Verma A, Chauhan S, Singh VK (2021) Effect of functionalized silicon carbide nano-particles as additive in cross-linked PVA based composites for vibration damping application. J Vinyl Add Tech 27(4):920–932

    Article  CAS  Google Scholar 

  65. Verma A, Jain N, Parashar A, Singh VK, Sanjay MR, Siengchin S (2020) Design and modeling of lightweight polymer composite structures. In: Lightweight polymer composite structures (pp 193–224). CRC Press

    Google Scholar 

  66. Dogra V, Kishore C, Verma A, Rana AK, Gaur A (2021) Fabrication and experimental testing of hybrid composite material having biodegradable bagasse fiber in a modified epoxy resin: evaluation of mechanical and morphological behavior. Appl Sci Eng Progress 14(4):661–667

    Google Scholar 

  67. Deji R, Verma A, Kaur N, Choudhary BC, Sharma RK (2022) Density functional theory study of carbon monoxide adsorption on transition metal doped armchair graphene nanoribbon. Mater Today: Proc 54:771–776

    CAS  Google Scholar 

  68. Verma A, Jain N, Parashar A, Gaur A, Sanjay MR, Siengchin S (2021) Lifecycle assessment of thermoplastic and thermosetting bamboo composites. In: Bamboo fiber composites (pp 235–246). Springer, Singapore

    Google Scholar 

  69. Deji R, Verma A, Choudhary BC, Sharma RK (2022) New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: a DFT approach. J Mol Graph Model 111:108109

    Article  Google Scholar 

  70. Verma A, Jain N, Parashar A, Singh VK, Sanjay MR, Siengchin S (2020) Lightweight graphene composite materials. In: Lightweight polymer composite structures (pp 1–20). CRC Press

    Google Scholar 

  71. Verma A, Parashar A (2020) Characterization of 2D nanomaterials for energy storage. In: Recent advances in theoretical, applied, computational and experimental mechanics (pp 221–226). Springer, Singapore

    Google Scholar 

  72. Arpitha GR, Jain N, Verma A, Madhusudhan M (2022) Corncob bio-waste and boron nitride particles reinforced epoxy-based composites for lightweight applications: fabrication and characterization. Biomass Conversion Biorefinery, pp1–8. https://doi.org/10.1007/s13399-022-03717-1

  73. Verma A, Samant SS (2016) Inspection of hydrodynamic lubrication in infinitely long journal bearing with oscillating journal velocity. J Appl Mech Eng 5(3):1–7

    Google Scholar 

  74. Verma A, Parashar A, Packirisamy M (2019) Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Appl Surf Sci 470:1085–1092

    Article  CAS  Google Scholar 

  75. Arpitha GR, Verma A, Sanjay MR, Siengchin S (2021) Preparation and experimental investigation on mechanical and tribological performance of hemp-glass fiber reinforced laminated composites for lightweight applications. Adv Civil Eng Mater 10(1):427–439

    CAS  Google Scholar 

  76. Verma A, Jain N, Rangappa SM, Siengchin S, Jawaid M (2021) Natural fibers based bio-phenolic composites. In: Phenolic polymers based composite materials(pp 153–168). Springer, Singapore

    Google Scholar 

  77. Verma A, Parashar A, Singh SK, Jain N, Sanjay SM, Siengchin S (2020) Modeling and simulation in polymer coatings. In: Polymer coatings (pp 309–324). CRC Press

    Google Scholar 

  78. Verma A, Singh VK, Experimental characterization of modified epoxy resin assorted with almond shell particles. ESSENCE-Int J Environ Rehab Conserv 7(1):36–44

    Google Scholar 

  79. Deji R, Verma A, Kaur N, Choudhary BC, Sharma RK (2022) Adsorption chemistry of co-doped graphene nanoribbon and its derivatives towards carbon based gases for gas sensing applications: quantum DFT investigation. Mater Sci Semicond Process 146:106670

    Article  Google Scholar 

  80. Verma A (2022) A perspective on the potential material candidate for railway sector applications: PVA based functionalized graphene reinforced composite. Appl Sci Eng Progress 15(2):5727–5727

    Google Scholar 

  81. Verma A, Jain N, Singh K, Singh VK, Rangappa SM, Siengchin S (2022) PVA-based blends and composites. In: Biodegradable polymers, blends and composites (pp 309–326). Woodhead Publishing

    Google Scholar 

  82. Raja S, Verma A, Rangappa SM, Siengchin S (2022) Development and experimental analysis of polymer based composite bipolar plate using Aquila Taguchi optimization: design of experiments. Polym Compos 43(8):5522–5533

    Article  CAS  Google Scholar 

  83. Prabhakaran S, Sharma S, Verma A, Rangappa SM, Siengchin S (2022) Mechanical, thermal, and acoustical studies on natural alternative material for partition walls: a novel experimental investigation. Polym Compos 43(7):4711–4720

    Article  CAS  Google Scholar 

  84. Chaturvedi S, Verma A, Sethi SK, Rangappa SM, Siengchin S (2022) Stalk fibers (rice, wheat, barley, etc.) composites and applications. In: Plant fibers, their composites, and applications (pp 347–362). Woodhead Publishing

    Google Scholar 

  85. Arpitha GR, Verma A, MRS, Gorbatyuk S, Khan A, Sobahi TR, Asiri AM, Siengchin S (2022) Bio-composite film from corn starch based vetiver cellulose. J Natural Fibers 19(16):14634–14644

    Google Scholar 

  86. Thimmaiah SH, Narayanappa K, Thyavihalli Girijappa Y, Gulihonenahali Rajakumara A, Hemath M, Thiagamani SMK, Verma A (2022) An artificial neural network and Taguchi prediction on wear characteristics of Kenaf-Kevlar fabric reinforced hybrid polyester composites. Polym Compos 44(1):261–273

    Article  Google Scholar 

  87. Chaturvedi S, Verma A, Singh SK, Ogata S (2022) EAM inter-atomic potential—its implication on nickel, copper, and aluminum (and Their Alloys). In: Forcefields for atomistic-scale simulations: materials and applications (pp 133–156). Springer, Singapore

    Google Scholar 

  88. Verma A, Sharma S (2022) atomistic simulations to study thermal effects and strain rate on mechanical and fracture properties of graphene like BC3. In: forcefields for atomistic-scale simulations: materials and applications (pp 237–252). Springer, Singapore

    Google Scholar 

  89. Chaturvedi S, Verma A, Sethi SK, Ogata S (2022) Defect energy calculations of nickel, copper and aluminium (and Their Alloys): Molecular dynamics approach. In: Forcefields for atomistic-scale simulations: materials and applications (pp 157–186). Springer, Singapore

    Google Scholar 

  90. Verma A, Gaur A, Singh VK (2017) Mechanical properties and microstructure of starch and sisal fiber biocomposite modified with epoxy resin. Mater Performance Characterization 6(1):500–520

    CAS  Google Scholar 

  91. Shankar U, Gogoi R, Sethi SK, Verma A (2022) Introduction to materials studio software for the atomistic-scale simulations. In: Forcefields for atomistic-scale simulations: materials and applications (pp 299–313). Springer, Singapore

    Google Scholar 

  92. Shankar U, Sethi SK, Verma A (2022) Forcefields and modeling of polymer coatings and nanocomposites. In: Forcefields for atomistic-scale simulations: materials and applications (pp 81–98). Springer, Singapore

    Google Scholar 

  93. Verma A, Ogata S (2022) Computational modelling of deformation and failure of bone at molecular scale. In: Forcefields for atomistic-scale simulations: materials and applications (pp 253–268). Springer, Singapore

    Google Scholar 

  94. Homer ER, Verma A, Britton D, Johnson OK, Thompson GB (2022) Simulated migration behavior of metastable Σ3 (11 8 5) incoherent twin grain boundaries. In: IOP conference series: materials science and engineering (Vol 1249, No 1, p 012019)

    Google Scholar 

  95. Verma A, Parashar A, van Duin AC (2022) Graphene-reinforced polymeric membranes for water desalination and gas separation/barrier applications. In: Innovations in graphene-based polymer composites (pp 133–165). Woodhead Publishing

    Google Scholar 

  96. Verma A, Jain N, Sanjay MR, Siengchin S, Viscoelastic properties of completely biodegradable polymer-based composites. In: Vibration and damping behavior of biocomposites (pp 173–188). CRC Press

    Google Scholar 

  97. Verma A, Jain N, Mishra RR (2022) Applications and drawbacks of epoxy/natural fiber composites. In: Handbook of epoxy/fiber composites (pp 1–15). Singapore: Springer Singapore

    Google Scholar 

  98. Lila MK, Verma A, Bhurat SS (2022) Impact behaviors of epoxy/synthetic fiber composites. In: Handbook of epoxy/fiber composites (pp 1–18). Singapore: Springer Singapore

    Google Scholar 

  99. Verma A, Parashar A (2017) The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene. Phys Chem Chem Phys 19(24):16023–16037

    Article  CAS  Google Scholar 

  100. Verma A, Parashar A (2018) Molecular dynamics based simulations to study failure morphology of hydroxyl and epoxide functionalised graphene. Comput Mater Sci 143:15–26

    Article  CAS  Google Scholar 

  101. Verma A, Parashar A (2018) Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide. Nanotechnology 29(11):115706

    Article  Google Scholar 

  102. Verma A, Parashar A (2018) Structural and chemical insights into thermal transport for strained functionalised graphene: a molecular dynamics study. Materials Res Express 5(11):115605

    Article  Google Scholar 

  103. Verma A, Parashar A, Packirisamy M (2018) Tailoring the failure morphology of 2D bicrystalline graphene oxide. J Appl Phys 124(1):015102

    Article  Google Scholar 

  104. Verma A, Parashar A (2018) Reactive force field based atomistic simulations to study fracture toughness of bicrystalline graphene functionalised with oxide groups. Diam Relat Mater 88:193–203

    Article  CAS  Google Scholar 

  105. Singla V, Verma A, Parashar A (2018) A molecular dynamics based study to estimate the point defects formation energies in graphene containing STW defects. Materials Res Express 6(1):015606

    Article  Google Scholar 

  106. Verma A, Parashar A, Packirisamy M (2019) Role of chemical adatoms in fracture mechanics of graphene nanolayer. Materials Today: Proc 11:920–924

    CAS  Google Scholar 

  107. Chaudhary A, Sharma S, Verma A (2022) Optimization of WEDM process parameters for machining of heat treated ASSAB’88 tool steel using Response surface methodology (RSM). Materials Today: Proc 50:917–922

    CAS  Google Scholar 

  108. Verma A, Zhang W, Van Duin AC (2021) ReaxFF reactive molecular dynamics simulations to study the interfacial dynamics between defective h-BN nanosheets and water nanodroplets. Phys Chem Chem Phys 23(18):10822–10834

    Article  CAS  Google Scholar 

  109. Verma A, Parashar A, Packirisamy M (2018) Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review. Wiley Interdisciplinary Rev Comput Molecular Sci 8(3):e1346

    Article  Google Scholar 

  110. Verma A, Baurai K, Sanjay MR, Siengchin S (2020) Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application. Polym Compos 41(1):338–349

    Article  CAS  Google Scholar 

  111. Verma A, Budiyal L, Sanjay MR, Siengchin S (2019) Processing and characterization analysis of pyrolyzed oil rubber (from waste tires)-epoxy polymer blend composite for lightweight structures and coatings applications. Polym Eng Sci 59(10):2041–2051

    Article  CAS  Google Scholar 

  112. Verma A, Negi P, Singh VK (2019) Experimental analysis on carbon residuum transformed epoxy resin: Chicken feather fiber hybrid composite. Polym Compos 40(7):2690–2699

    Article  CAS  Google Scholar 

  113. Verma A, Singh VK (2018) Mechanical, microstructural and thermal characterization of epoxy-based human hair–reinforced composites. J Test Eval 47(2):1193–1215

    Google Scholar 

  114. Jain N, Verma A, Ogata S, Sanjay MR, Siengchin S (2022) Application of machine learning in determining the mechanical properties of materials. In: Machine learning applied to composite materials (pp 99–113). Springer, Singapore

    Google Scholar 

  115. Verma A, Singh VK, Verma SK, Sharma A (2016) Human hair: a biodegradable composite fiber–a review. Int J Waste Res 6(206):2

    Google Scholar 

  116. Kataria A, Verma A, Sanjay MR, Siengchin S, Jawaid M (2022) Physical, morphological, structural, thermal, and tensile properties of coir fibers. In: Coir fiber and its composites (pp 79–107). Woodhead Publishing

    Google Scholar 

  117. Jain N, Verma A, Singh VK (2019) Dynamic mechanical analysis and creep-recovery behaviour of polyvinyl alcohol based cross-linked biocomposite reinforced with basalt fiber. Materials Res Express 6(10):105373

    Article  CAS  Google Scholar 

  118. Chaurasia A, Verma A, Parashar A, Mulik RS (2019) Experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/polyethylene nanocomposites. J Phys Chem C 123(32):20059–20070

    Article  CAS  Google Scholar 

  119. Verma A, Kumar R, Parashar A (2019) Enhanced thermal transport across a bi-crystalline graphene–polymer interface: an atomistic approach. Phys Chem Chem Phys 21(11):6229–6237

    Article  CAS  Google Scholar 

  120. Verma A, Negi P, Singh VK (2018) Physical and thermal characterization of chicken feather fiber and crumb rubber reformed epoxy resin hybrid composite. Adv Civil Eng Materials 7(1):538–557

    Article  CAS  Google Scholar 

  121. Bharath KN, Madhu P, Gowda TG, Verma A, Sanjay MR, Siengchin S (2020) A novel approach for development of printed circuit board from biofiber based composites. Polym Compos 41(11):4550–4558

    Article  CAS  Google Scholar 

  122. Verma A, Joshi K, Gaur A, Singh VK (2018) Starch-jute fiber hybrid biocomposite modified with an epoxy resin coating: fabrication and experimental characterization. J Mech Behav Materials 27(5–6)

    Google Scholar 

  123. Verma A, Singh C, Singh VK, Jain N (2019) Fabrication and characterization of chitosan-coated sisal fiber–Phytagel modified soy protein-based green composite. J Compos Mater 53(18):2481–2504

    Article  CAS  Google Scholar 

  124. Rastogi S, Verma A, Singh VK (2020) Experimental response of nonwoven waste cellulose fabric–reinforced epoxy composites for high toughness and coating applications. Materials Performance Characterization 9(1):151–172

    Article  Google Scholar 

  125. Verma A, Ogata S (2023) Magnesium based alloys for reinforcing biopolymer composites and coatings: a critical overview on biomedical materials. Adv Indus Eng Polymer Res.https://doi.org/10.1016/j.aiepr.2023.01.002

  126. Kataria A, , Vaibhav Chaudhary SC, Verma A, Mavinkere Rangappa Sanjay NJ, Siengchin S (2023) Cellulose fiber-reinforced composites—History of evolution, chemistry, and structure. In: Cellulose fibre reinforced composites (pp 1–22). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-90125-3.00012-4

  127. Chaturvedi S, Kataria A, Chaudhary V, Verma A, Mavinkere Rangappa Sanjay NJ, Siengchin S (2023) Bionanocomposites reinforced with cellulose fibers and agro-industrial wastes. In: Cellulose fibre reinforced composites (pp 1–22). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-90125-3.00017-3

  128. Arpitha GR, Mohit H, Madhu P, Verma* A (2023) Effect of sugarcane bagasse and alumina reinforcements on physical, mechanical, and thermal characteristics of epoxy composites using artificial neural networks and response surface methodology. Biomass Conver Biorefinery.https://doi.org/10.1007/s13399-023-03886-7

Download references

Acknowledgements

Author “Akarsh Verma” is grateful to the monetary support provided by the University of Petroleum and Energy Studies (UPES)-SEED Grant program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushanta K. Sethi .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

“There are no conflicts of interest to declare by the authors.”

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, H.S., Shankar, U., Verma, A., Gogoi, R., Sethi, S.K. (2023). Computational Aspects: Self-clean Coatings, Plastics and Polymers in Coatings. In: Verma, A., Sethi, S.K., Ogata, S. (eds) Coating Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3549-9_8

Download citation

Publish with us

Policies and ethics