Skip to main content

Biodegradable Polymers—Carriers for Drug Delivery

  • Chapter
  • First Online:
Biodegradable Polymers and Their Emerging Applications

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 272 Accesses

Abstract

Biodegradable polymers have been used for developing pharmaceutical formulations as they act as the protective layer to encapsulate therapeutics and deliver them to the target site in a controlled and sustainable manner. Moreover, they are biocompatible, and their degradation products are non-mutagenic, nontoxic, and removed from the body by the excretory system. In this chapter, we discuss different biodegradable polymers used in developing drug delivery carriers based on their source of origin and  release mechanism of the encapsulated therapeutics, and their inclusion in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong T, Shen X, Syeda MZ, Zhang Y, Sheng H, Zhou Y et al (2022) Recent advances of bioresponsive polymeric nanomedicine for cancer therapy. Nano Res 1–12. https://doi.org/10.1007/s12274-022-5002-2

  2. Trucillo P (2021) Drug carriers: classification, administration, release profiles, and industrial approach. Processes 9(3):470

    Article  Google Scholar 

  3. Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V et al (2021) Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.601626

  4. Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y et al (2019) Recent progress in drug delivery. Acta Pharm Sin B 9(6):1145–1162. https://doi.org/10.1016/j.apsb.2019.08.003

    Article  Google Scholar 

  5. Mirza I, Saha S (2020) Biocompatible anisotropic polymeric particles: synthesis, characterization, and biomedical applications. ACS Appl Bio Mater 3(12):8241–8270. https://doi.org/10.1021/acsabm.0c01075

    Article  Google Scholar 

  6. Parthipan AK, Gupta N, Pandey K, Sharma B, Jacob J, Saha S (2019) One-step fabrication of bicompartmental microparticles as a dual drug delivery system for Parkinson’s disease management. J Mater Sci 54(1):730–744. https://doi.org/10.1007/s10853-018-2819-x

    Article  Google Scholar 

  7. Chen C-K, Huang P-K, Law W-C, Chu C-H, Chen N-T, Lo L-W (2020) Biodegradable polymers for gene-delivery applications. Int J Nanomed 15:2131–2150. https://doi.org/10.2147/IJN.S222419

    Article  Google Scholar 

  8. Jana P, Shyam M, Singh S, Jayaprakash V, Dev A (2021) Biodegradable polymers in drug delivery and oral vaccination. Eur Polymer J 142:110155. https://doi.org/10.1016/j.eurpolymj.2020.110155

    Article  Google Scholar 

  9. Thodikayil AT, Sharma S, Saha S (2021) Engineering carbohydrate-based particles for biomedical applications: strategies to construct and modify. ACS Appl Bio Mater 4(4):2907–2940. https://doi.org/10.1021/acsabm.0c01656

    Article  Google Scholar 

  10. Doppalapudi S, Jain A, Domb AJ, Khan W (2016) Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opin Drug Deliv 13(6):891–909. https://doi.org/10.1517/17425247.2016.1156671

    Article  Google Scholar 

  11. George A, Shah PA, Shrivastav PS (2019) Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm 561:244–264. https://doi.org/10.1016/j.ijpharm.2019.03.011

    Article  Google Scholar 

  12. Huang G, Liu Y, Chen L (2017) Chitosan and its derivatives as vehicles for drug delivery. Drug Deliv 24(sup1):108–113. https://doi.org/10.1080/10717544.2017.1399305

    Article  Google Scholar 

  13. Parhi R (2020) Drug delivery applications of chitin and chitosan: a review. Environ Chem Lett 18. https://doi.org/10.1007/s10311-020-00963-5

  14. Quiñones JP, Peniche H, Peniche C (2018) Chitosan based self-assembled nanoparticles in drug delivery. Polymers (Basel) 10(3):235. https://doi.org/10.3390/polym10030235

    Article  Google Scholar 

  15. Li J, Cai C, Li J, Li J, Li J, Sun T et al (2018) Chitosan-based nanomaterials for drug delivery. Molecules 23(10). https://doi.org/10.3390/molecules23102661

  16. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M (2022) Drug release study of the chitosan-based nanoparticles. Heliyon 8(1):e08674. https://doi.org/10.1016/j.heliyon.2021.e08674

    Article  Google Scholar 

  17. Huang G, Huang H (2018) Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system. J Control Release 278:122–126. https://doi.org/10.1016/j.jconrel.2018.04.015

    Article  Google Scholar 

  18. Vasvani S, Kulkarni P, Rawtani D (2020) Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol 151:1012–1029. https://doi.org/10.1016/j.ijbiomac.2019.11.066

    Article  Google Scholar 

  19. Buckley C, Murphy EJ, Montgomery TR, Major I (2022) Hyaluronic acid: a review of the drug delivery capabilities of this naturally occurring polysaccharide. Polymers (Basel) 14(17). https://doi.org/10.3390/polym14173442

  20. Huang G, Huang H (2018) Application of hyaluronic acid as carriers in drug delivery. Drug Deliv 25(1):766–772. https://doi.org/10.1080/10717544.2018.1450910

    Article  MathSciNet  Google Scholar 

  21. Huang S, Huang G (2019) Preparation and drug delivery of dextran-drug complex. Drug Deliv 26(1):252–261. https://doi.org/10.1080/10717544.2019.1580322

    Article  Google Scholar 

  22. Wang S, Fontana F, Shahbazi M-A, Santos HA (2021) Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chem Commun 57(35):4212–4229. https://doi.org/10.1039/D1CC00811K

    Article  Google Scholar 

  23. Biswal AK, Thodikayil AT, Saha S (2021) pH-sensitive acetalated dextran/PLGA-based double-layered microparticles and their application in food preservation. ACS Appl Bio Mater 4(3):2429–2441. https://doi.org/10.1021/acsabm.0c01361

    Article  Google Scholar 

  24. Huang S, Huang G (2019) The dextrans as vehicles for gene and drug delivery. Future Med Chem 11(13):1659–1667. https://doi.org/10.4155/fmc-2018-0586

    Article  Google Scholar 

  25. Zhu S, Yuan Q, Yin T, You J, Gu Z, Xiong S et al (2018) Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. J Mater Chem B 6(18):2650–2676. https://doi.org/10.1039/C7TB02999C

    Article  Google Scholar 

  26. Doppalapudi S, Jain A, Khan W, Domb AJ (2014) Biodegradable polymers—an overview. Polym Adv Technol 25(5):427–435. https://doi.org/10.1002/pat.3305

    Article  Google Scholar 

  27. Amit Kumar V (2022) Collagen-based biomaterial as drug delivery module. In: Nirmal M, Sanjiban C (eds) Collagen biomaterials. IntechOpen, Rijeka

    Google Scholar 

  28. Mondal D, Griffith M, Venkatraman SS (2016) Polycaprolactone-based biomaterials for tissue engineering and drug delivery: current scenario and challenges. Int J Polym Mater Polym Biomater 65(5):255–265. https://doi.org/10.1080/00914037.2015.1103241

    Article  Google Scholar 

  29. Camasão DB, González-Pérez M, Palladino S, Alonso M, Rodríguez-Cabello JC, Mantovani D (2020) Elastin-like recombinamers in collagen-based tubular gels improve cell-mediated remodeling and viscoelastic properties. Biomater Sci 8(12):3536–3548. https://doi.org/10.1039/D0BM00292E

    Article  Google Scholar 

  30. Sleep D (2015) Albumin and its application in drug delivery. Expert Opin Drug Deliv 12(5):793–812. https://doi.org/10.1517/17425247.2015.993313

    Article  Google Scholar 

  31. Karami E, Behdani M, Kazemi-Lomedasht F (2020) Albumin nanoparticles as nanocarriers for drug delivery: focusing on antibody and nanobody delivery and albumin-based drugs. J Drug Deliv Sci Technol 55:101471. https://doi.org/10.1016/j.jddst.2019.101471

    Article  Google Scholar 

  32. Larsen MT, Kuhlmann M, Hvam ML, Howard KA (2016) Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther 4:3. https://doi.org/10.1186/s40591-016-0048-8

    Article  Google Scholar 

  33. Van de Sande L, Cosyns S, Willaert W, Ceelen W (2020) Albumin-based cancer therapeutics for intraperitoneal drug delivery: a review. Drug Deliv 27(1):40–53. https://doi.org/10.1080/10717544.2019.1704945

    Article  Google Scholar 

  34. Elsadek B, Kratz F (2012) Impact of albumin on drug delivery—new applications on the horizon. J Control Release 157(1):4–28

    Article  Google Scholar 

  35. Butt FI, Muhammad N, Hamid A, Moniruzzaman M, Sharif F (2018) Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications—review. Int J Biol Macromol 120:1294–1305. https://doi.org/10.1016/j.ijbiomac.2018.09.002

    Article  Google Scholar 

  36. Elmowafy E, Abdal-Hay A, Skouras A, Tiboni M, Casettari L, Guarino V (2019) Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Rev Med Devices 16(6):467–482. https://doi.org/10.1080/17434440.2019.1615439

    Article  Google Scholar 

  37. Prakash P, Lee WH, Loo CY, Wong HSJ, Parumasivam T (2022) Advances in polyhydroxyalkanoate nanocarriers for effective drug delivery: an overview and challenges. Nanomaterials (Basel) 12(1). https://doi.org/10.3390/nano12010175

  38. Gregory DA, Taylor CS, Fricker ATR, Asare E, Tetali SSV, Haycock JW et al (2022) Polyhydroxyalkanoates and their advances for biomedical applications. Trends Mol Med 28(4):331–342. https://doi.org/10.1016/j.molmed.2022.01.007

    Article  Google Scholar 

  39. Ansari S, Sami N, Yasin D, Ahmad N, Fatma T (2021) Biomedical applications of environmental friendly poly-hydroxyalkanoates. Int J Biol Macromol 183:549–563. https://doi.org/10.1016/j.ijbiomac.2021.04.171

    Article  Google Scholar 

  40. Lee BK, Yun Y, Park K (2016) PLA micro- and nano-particles. Adv Drug Deliv Rev 107:176–191. https://doi.org/10.1016/j.addr.2016.05.020

    Article  Google Scholar 

  41. Liu S, Qin S, He M, Zhou D, Qin Q, Wang H (2020) Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos B Eng 199:108238. https://doi.org/10.1016/j.compositesb.2020.108238

    Article  Google Scholar 

  42. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175. https://doi.org/10.1016/j.addr.2016.06.018

    Article  Google Scholar 

  43. Łukasiewicz S, Mikołajczyk A, Błasiak E, Fic E, Dziedzicka-Wasylewska M (2021) Polycaprolactone nanoparticles as promising candidates for nanocarriers in novel nanomedicines. Pharmaceutics 13(2). https://doi.org/10.3390/pharmaceutics13020191

  44. Espinoza SM, Patil HI, San Martin Martinez E, Casañas Pimentel R, Ige PP (2020) Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: focus on nanomedicine in cancer. Int J Polym Mater Polym Biomater 69(2):85–126. https://doi.org/10.1080/00914037.2018.1539990

  45. Ma G, Song C, Sun H, Yang J, Leng X (2006) A biodegradable levonorgestrel-releasing implant made of PCL/F68 compound as tested in rats and dogs. Contraception 74(2):141–147. https://doi.org/10.1016/j.contraception.2006.02.013

    Article  Google Scholar 

  46. Pardeshi SR, Nikam A, Chandak P, Mandale V, Naik JB, Giram PS (2023) Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. Int J Polym Mater Polym Biomater 72(1):49–78. https://doi.org/10.1080/00914037.2021.1985495

    Article  Google Scholar 

  47. Martins C, Sousa F, Araújo F, Sarmento B (2018) Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater 7(1). https://doi.org/10.1002/adhm.201701035

  48. Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R (2020) Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 9(4):153–174. https://doi.org/10.1007/s40204-020-00139-y

    Article  Google Scholar 

  49. Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S (2015) PLGA: a unique polymer for drug delivery. Ther Deliv 6(1):41–58. https://doi.org/10.4155/tde.14.91

    Article  Google Scholar 

  50. Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X et al (2021) PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv 28(1):1397–1418. https://doi.org/10.1080/10717544.2021.1938756

    Article  Google Scholar 

  51. Jain JP, Modi S, Domb A, Kumar N (2005) Role of polyanhydrides as localized drug carriers. J Control Release 103(3):541–563

    Article  Google Scholar 

  52. Reddy PG, Domb AJ (2022) Polyanhydride chemistry. Biomacromolecules. https://doi.org/10.1021/acs.biomac.2c01180

    Article  Google Scholar 

  53. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z (2018) Current development of biodegradable polymeric materials for biomedical applications. Drug Des Dev Ther 12:3117

    Article  Google Scholar 

  54. Basu A, Domb AJ (2018) Recent advances in polyanhydride based biomaterials. Adv Mater 30(41):1706815. https://doi.org/10.1002/adma.201706815

    Article  Google Scholar 

  55. Wang Y-C, Yuan Y-Y, Du J-Z, Yang X-Z, Wang J (2009) Recent progress in polyphosphoesters: from controlled synthesis to biomedical applications. Macromol Biosci 9(12):1154–1164. https://doi.org/10.1002/mabi.200900253

    Article  Google Scholar 

  56. Zhao Z, Wang J, Mao HQ, Leong KW (2003) Polyphosphoesters in drug and gene delivery. Adv Drug Deliv Rev 55(4):483–499. https://doi.org/10.1016/s0169-409x(03)00040-1

    Article  Google Scholar 

  57. Yilmaz ZE, Jérôme C (2016) Polyphosphoesters: new trends in synthesis and drug delivery applications. Macromol Biosci 16(12):1745–1761. https://doi.org/10.1002/mabi.201600269

    Article  Google Scholar 

  58. Jerbic I (2018) Biodegradable synthetic polymers and their application in advanced drug delivery systems (DDS). J Chem Eng Process Technol 09. https://doi.org/10.4172/2157-7048-C1-011

  59. Gavasane A, Pawar H (2014) Synthetic biodegradable polymers used in controlled drug delivery system: an overview. Clin Pharmacol Biopharm 3:121. https://doi.org/10.4172/2167-065X.1000121

    Article  Google Scholar 

  60. Varde NK, Pack DW (2004) Microspheres for controlled release drug delivery. Expert Opin Biol Therapy. 4(1):35–51.https://doi.org/10.1517/14712598.4.1.35

  61. Son G-H, Lee B-J, Cho C-W (2017) Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharm Investig 47:287–296

    Article  Google Scholar 

  62. Dash S, Murthy P, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223

    Google Scholar 

  63. Ashby LS, Smith KA, Stea B (2016) Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review. World J Surg Oncol 14(1):225. https://doi.org/10.1186/s12957-016-0975-5

    Article  Google Scholar 

  64. Wolinsky JB, Colson YL, Grinstaff MW (2012) Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 159(1):14–26. https://doi.org/10.1016/j.jconrel.2011.11.031

    Article  Google Scholar 

  65. Behring C. Albumin (Human) 25% Solution AlbuRx® 25

    Google Scholar 

  66. Dlugi AM, Miller JD, Knittle J (1990) Lupron**TAP pharmaceuticals, North Chicago, Illinois. depot (leuprolide acetate for depot suspension) in the treatment of endometriosis: a randomized, placebo-controlled, double-blind study ††Supported by a grant from TAP Pharmaceuticals, North Chicago, Illinois. Fertil Steril 54(3):419–27. https://doi.org/10.1016/S0015-0282(16)53755-8

  67. English J, Daly S, McGuinness N, Kiernan E, Prendiville W (1998) Medical preparation of the endometrium prior to resection: decapeptyl SR (triptorelin) versus danazol versus placebo. Minim Invasive Ther Allied Technol 7(3):251–256. https://doi.org/10.3109/13645709809152859

    Article  Google Scholar 

  68. Zhong H, Chan G, Hu Y, Hu H, Ouyang D (2018) A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics 10(4):263

    Article  Google Scholar 

  69. McKay WF, Peckham SM, Badura JM (2007) A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® bone graft). Int Orthop 31(6):729–734. https://doi.org/10.1007/s00264-007-0418-6

    Article  Google Scholar 

  70. Silverman BL, Blethen SL, Reiter EO, Attie KM, Neuwirth RB, Ford KM (2002) A long-acting human growth hormone (Nutropin Depot®): efficacy and safety following two years of treatment in children with growth hormone deficiency. J Pediatr Endocrinol Metab 15(Supplement):715–722. https://doi.org/10.1515/JPEM.2002.15.S2.715

    Article  Google Scholar 

  71. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine 4:99–105. https://doi.org/10.2147/ijn.s3061

    Article  Google Scholar 

  72. Sartor O (2006) Eligard® 6: a new form of treatment for prostate cancer. Eur Urol Suppl 5(18):905–910. https://doi.org/10.1016/j.eursup.2006.08.006

    Article  Google Scholar 

  73. Jain A, Kunduru KR, Basu A, Mizrahi B, Domb AJ, Khan W (2016) Injectable formulations of poly(lactic acid) and its copolymers in clinical use. Adv Drug Deliv Rev 107:213–227. https://doi.org/10.1016/j.addr.2016.07.002

    Article  Google Scholar 

  74. Zentner GM, Rathi R, Shih C, McRea JC, Seo MH, Oh H et al (2001) Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release 72(1–3):203–215. https://doi.org/10.1016/s0168-3659(01)00276-0

    Article  Google Scholar 

  75. Nanda HS, Yang L, Hu J, Mao H, Jiang S (2022) Editorial: biodegradable polymers for biomedical applications. Front Mater 9. https://doi.org/10.3389/fmats.2022.944755

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, N., Sarkar, C., Saha, S. (2023). Biodegradable Polymers—Carriers for Drug Delivery. In: Saha, S., Sarkar, C. (eds) Biodegradable Polymers and Their Emerging Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3307-5_7

Download citation

Publish with us

Policies and ethics