Skip to main content

Metallic Nanoparticles and Bioremediation for Wastewater Treatment

  • Chapter
  • First Online:
Advanced Application of Nanotechnology to Industrial Wastewater

Abstract

Water critically influences the standard of society living and affects the availability of equal development opportunities. It is hence important to secure safe and clean water supplies for all societies and this requires planned sustainable management of water and wastewater. Bioremediation approaches have recently emerged as one effective low-cost alternative compared to other conventional remediation technologies. Nanotechnology is a potentially good approach for developing the next generation of this field. Nano-bioremediation is the new concept that integrates the use of nanoparticles for sustainable remediation of environmental pollutants. Metallic nanoparticles have almost specific characteristics such as their very small size and large surface-to-volume ratio. Metal nanoparticles possess large surface energy and so have the ability to adsorb small molecules. Iron oxide nanoparticles have extensive applications throughout contemporary science and technological innovation. Ag-nanoparticles have successfully been applied in water and wastewater disinfection. Bimetallic nanoparticles which have core–shell morphology provide some more enhanced properties if compared with their monometallic. There is a new approach is suggested to benefit from the bimetallic nanoparticles, as nano-adsorbents. It is developed by the generation of granular particles with mastered dimensions by the encapsulation of nano-adsorbents in sodium alginate (SA) beads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adetunde L, Glover R (2010) Bacteriological quality of borehole water used by students’ of university for development studies, Navrongo campus in upper-east region of Ghana. Curr Res J Biol Sci 2(6):361–364

    Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf, B 28(4):313–318

    Article  CAS  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28

    Article  CAS  Google Scholar 

  • Akhavan O (2009) Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J. Colloid and Interface Sc. 336:117–124

    Article  CAS  Google Scholar 

  • Ali DM et al (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Biostruct 6(2):385–390

    Google Scholar 

  • Ali A, Zafar H, Zia M, ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci App 49–67

    Google Scholar 

  • Antizar-Ladislao B (2010) Bioremediation: working with bacteria. Elements 6(6):389–394

    Article  CAS  Google Scholar 

  • Aziz A, Basheer F, Sengar A, Khan SU, Farooqi IH (2019) Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater. Sci Total Environ 686:681–708

    Google Scholar 

  • Aziz F, Ouazzani N, Mandi L, Muhammad M, Uheida A (2017) Composite nanofibers of polyacrylonitrile/natural clay for decontamination of water containing Pb (II), Cu (II), Zn (II) and pesticides. Sep Sci Technol 52(1):58–70

    Article  CAS  Google Scholar 

  • Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277

    Google Scholar 

  • Baghayeri M (2015) Glucose sensing by a glassy carbon electrode modified with glucose oxidase and a magnetic polymeric nanocomposite. RSC Adv 5(24):18267–18274

    Article  CAS  Google Scholar 

  • Bahrami F, Yu X, Zou Y, Sun Y, Sun G (2020) Impregnated calcium-alginate beads as floating reactors for the remediation of nitrate-contaminated groundwater. Chem Eng J 382:122774

    Article  CAS  Google Scholar 

  • Baikousi M, Bourlinos AB, Douvalis A, Bakas T, Anagnostopoulos DF, Tuček J, Karakassides MA (2012) Synthesis and characterization of γ-Fe2O3/carbon hybrids and their application in removal of hexavalent chromium ions from aqueous solutions. Langmuir 28(8):3918–3930

    Article  CAS  Google Scholar 

  • Balaji D et al (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf, B 68(1):88–92

    Article  CAS  Google Scholar 

  • Barrak H et al (2019) Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA): Investigation of the interactions between Phloroglucinol and ZnO@ TMSEDTA. Arab J Chem 12(8):4340–4347

    Article  CAS  Google Scholar 

  • Baruah S et al (2012) Nanostructured zinc oxide for water treatment. Nanosci Nanotechnol-Asia 2(2):90–102

    Article  CAS  Google Scholar 

  • Berefield LD, Judkins JF, Weand BL (1982) Process chemistry for water and wastewater treatment. Prentice-Hall, New Jersey

    Google Scholar 

  • Bharagava RN, et al (2019) Applications of metagenomics in microbial bioremediation of pollutants: from genomics to environmental cleanup. Microbial diversity in the genomic era. Elsevier, pp 459–477

    Google Scholar 

  • Bharti B, Kumar V, Kumar H (2022) Application of nanocellulose as nanotechnology in water purification. In: Nanocellulose materials. Elsevier, pp 179–198

    Google Scholar 

  • Bhatt P, Pandey SC, Joshi S, Chaudhary P, Pathak VM, Huang Y, Chen S, et al (2021) Nanobioremediation: a sustainable approach for the removal of toxic pollutants from the environment. J Hazard Mater 128033

    Google Scholar 

  • Bhaviripudi S et al (2007) CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J Am Chem Soc 129(6):1516–1517

    Article  CAS  Google Scholar 

  • Bora T, Dutta J (2014) Applications of nanotechnology in wastewater treatment—a review. J Nanosci Nanotechnol 14(1):613–626

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25(3):743–756

    Article  CAS  Google Scholar 

  • Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Wagner S, et al (2018) Nanoparticles in the environment: where do we come from, where do we go to?. Environ Sci Eur 30(1):1–17

    Google Scholar 

  • Carroll KJ, Hudgins DM, Spurgeon S, Kemner KM, Mishra B, Boyanov MI, Carpenter EE (2010) One-pot aqueous synthesis of Fe and Ag core/shell nanoparticles. Chem Mater 22(23):6291–6296

    Google Scholar 

  • Castro-Longoria E, Moreno-Velasquez SD, Vilchis-Nestor AR, Arenas-Berumen E, Avalos-Borja M (2012) Production of platinum nanoparticles and nanoaggregates using neurospora crassa. J Microbiol Biotechnol 22(7):1000–1004

    Google Scholar 

  • Cecchin I et al (2017) Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeterior Biodegradation 119:419–428

    Article  CAS  Google Scholar 

  • Choi H, Al-Abed SR, Dionysiou DD (2009) Nanostructured titanium oxide film and membrane-based photocatalysis for water treatment, nanotechnology applications for clean water. pp 39–46

    Google Scholar 

  • Corcoran E, et al (2010) Sick water? The central role of wastewater management in sustainable development. A rapid response assessment. United Nations Environment Programme, UN‐HABITAT, GRID‐Arendal. ISBN 978-82-7701-075-5

    Google Scholar 

  • Dahoumane SA, Wujcik EK, Jeffryes C (2016) Noble metal, oxide and chalcogenide-based nanomaterials from scalable phototrophic culture systems. Enzym Microb Technol 95:13–27

    Article  CAS  Google Scholar 

  • Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J (2017) Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta 184(9):3049–3067

    Article  CAS  Google Scholar 

  • Davis SA et al (1998) Brittle bacteria: a biomimetic approach to the formation of fibrous composite materials. Chem Mater 10(9):2516–2524

    Article  CAS  Google Scholar 

  • Dhand C et al (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5(127):105003–105037

    Article  CAS  Google Scholar 

  • Di Natale F, Gargiulo V, Alfè M (2020) Adsorption of heavy metals on silica-supported hydrophilic carbonaceous nanoparticles (SHNPs). J Hazard Mater 393:122374. https://doi.org/10.1016/j.jhazmat.2020.122374

    Article  CAS  Google Scholar 

  • Dong J, Xu Z, Kuznicki SM (2009) Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents. Environ Sci Technol 43(9):3266–3271

    Article  CAS  Google Scholar 

  • Ealias AM, Saravanakumar M (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng

    Google Scholar 

  • El Saliby I et al (2008) Nanotechnology for wastewater treatment: in brief. Encycl Life Support Syst (EOLSS) 7

    Google Scholar 

  • Elboughdiri N (2020) The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater. Cogent Eng 7. https://doi.org/10.1080/23311916.2020.1782623

  • El-Sheekh MM, Ibrahim HA, Amer MS, Ali EM (2021) Wastewater treatment by membrane bioreactor as potent and advanced technology. In: Membrane-based hybrid processes for wastewater treatment. Elsevier, pp 45–72

    Google Scholar 

  • European Commission (2004) Nanotechnology: innovation for tomorrow’s world. European Commission, Brussels, Belgium

    Google Scholar 

  • Fahmy HM, Mohamed FM, Marzouq MH, Mustafa ABED, Alsoudi AM, Ali OA, Mahmoud FA (2018) Review of green methods of iron nanoparticles synthesis and applications. BioNanoScience 8(2):491–503

    Google Scholar 

  • Figueroa SJA, Stewart SJ, Rueda T, Hernando A, De la Presa P (2011) Thermal evolution of Pt-Rich FePt/Fe3O4 heterodimers studied using X-ray absorption near-edge spectroscopy. J Phys Chem C 115(13):5500–5508

    Article  CAS  Google Scholar 

  • Filipponi L, et al (2010) Introduction to nanoscience and nanotechnologies. NANOYOU Teach Train Kit Nanosci Nanotechnolo 1–29

    Google Scholar 

  • Frattini A, Pellegri N, Nicastro D, de Sanctis O (2005) Preparation of amine coated silver nanoparticles using triethylenetetramine. Mater Chem Phys 94:148–152

    Article  CAS  Google Scholar 

  • Frey NA, Phan MH, Srikanth H, Srinath S, Wang C, Sun S (2009) Interparticle interactions in coupled Au–Fe 3 O 4 nanoparticles. J Appl Phys 105(7):07B502

    Article  Google Scholar 

  • Fuller GW (1933) Progress in water purification. J Am Water Work Assoc 25(11):1566–1576

    Article  CAS  Google Scholar 

  • Ganesh M et al (2017) One pot synthesized Li, Zr doped porous silica nanoparticle for low temperature CO2 adsorption. Arab J Chem 10:S1501–S1505

    Article  CAS  Google Scholar 

  • Gawande MB et al (2011) Synthesis and characterization of versatile MgO–ZrO 2 mixed metal oxide nanoparticles and their applications. Catal Sci Technol 1(9):1653–1664

    Article  CAS  Google Scholar 

  • Gilaki M (2010) Biosynthesis of silver nanoparticles using plant extracts. J Biol Sci 10(5):465–467

    Article  CAS  Google Scholar 

  • Gosavi K, Sammut J, Gifford S, Jankowski J (2004) Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds. Sci Total Environ 324:25–39

    Article  CAS  Google Scholar 

  • Goutam SP et al (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396

    Article  CAS  Google Scholar 

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for waste water treatment. Environ Chem Lett (Springer Verlag) 17(1):145–155. https://doi.org/10.1007/s10311-018-0785-9.hal-02082890

    Article  CAS  Google Scholar 

  • Gu N, Zhang Z, Li Y (2022) Adaptive iron-based magnetic nanomaterials of high performance for biomedical applications. Nano Res 15(1):1–17

    Article  Google Scholar 

  • Guo D, Xie G, Luo J (2013) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47(1):013001

    Article  Google Scholar 

  • Gurav DD et al (2019) Design of plasmonic nanomaterials for diagnostic spectrometry. Nanoscale Adv 1(2):459–469

    Article  Google Scholar 

  • Hasan S (2015) A review on nanoparticles: their synthesis and types. Res J Recent Sci 2277:2502

    Google Scholar 

  • Hazen A (1914) Clean water and how to get it. Wiley

    Google Scholar 

  • Herlekar M, Barve S, Kumar R (2014) Plant-mediated green synthesis of iron nanoparticles. J Nanoparticles

    Google Scholar 

  • Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19(45):8671–8677

    Google Scholar 

  • Hu A, Apblett A (2014) Nanotechnology for water treatment and purification. Springer

    Book  Google Scholar 

  • Husain S, Sardar M, Fatma T (2015) Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World J Microbiol Biotechnol 31:1279–1283

    Google Scholar 

  • Hussain N, Bilal M, Iqbal HM (2022) Carbon-based nanomaterials with multipurpose attributes for water treatment: Greening the 21st-century nanostructure materials deployment. Biomater Polym Horiz 1(1):48–58

    Article  Google Scholar 

  • Iravani S, Thota S, Crans DC (2018) Methods for preparation of metal nanoparticles. Metal nanoparticles: synthesis and applications in pharmaceutical sciences, Wiley-VCH Verlag GmbH & Co. KGaA, pp 15–31

    Google Scholar 

  • Iqbal P, et al (2012) Nanotechnology: The “Top‐Down” and “Bottom‐Up” Approaches. Supramol Chem: Mol Nanomater

    Google Scholar 

  • Jain KK (2005) The role of nanobiotechnology in drug discovery. Drug Discovery Today 10(21):1435–1442

    Article  CAS  Google Scholar 

  • Janani R, Baskar G, Sivakumar K, Varjani S, Ngo HH, Gnansounou E (2021) Advancements in heavy metals removal from effluents employing nano-adsorbents: way towards cleaner production. Environ Res 203:111815. https://doi.org/10.1016/j.envres.2021.111815

    Article  CAS  Google Scholar 

  • Jeyaraj M et al (2019) A Comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials 9(12):1719

    Article  CAS  Google Scholar 

  • Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R, Kapildev G, Manickavasagam M, Thajuddin N, Premkumar K (2013) Biogenic silver nanoparticles for cancer treatment: an experimental report. Coll Surf B: Biointerfa 106:86–92

    Google Scholar 

  • Kanchi S (2014) Nanotechnology for water treatment. J Environ Anal Chem 1(2):1–3

    Article  Google Scholar 

  • Kaufman Y, Freger V (2011) Supported biomimetic membranes for pressure driven water purification, on biomimetics. LilyanaPramatarova (Ed) In Tech. http://www.intechopen.com/books/on-biomimetics/supported-biomimeticmembranes-for-pressuredrivenwaterpurification

  • Khan I et al (2017a) Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason Sonochem 34:484–490

    Article  Google Scholar 

  • Khan I, Saeed K, Khan I (2017b) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908

    Google Scholar 

  • Khan I et al (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  • Khosravi M, Azizian S (2014) Adsorption of anionic dyes from aqueous solution by iron oxide nanospheres. J Ind Eng Chem 20(4):2561–2567

    Article  CAS  Google Scholar 

  • Kim C, Lee J, Schmucker D, Fortner JD (2020) Highly stable superparamagnetic iron oxide nanoparticles as functional draw solutes for osmotically driven water transport. NPJ Clean Water 3(1):1–6

    Article  Google Scholar 

  • Kong Y, Zhuang Y, Shi B (2020) Tetracycline removal by double-metal-crosslinked alginate/graphene hydrogels through an enhanced Fenton reaction. J Hazard Mater 382:121060

    Article  CAS  Google Scholar 

  • Krantzberg G, Tanik A, do Carmo JSA, Indarto A, Ekda A (2010) Advances in water quality control. Scientific Research Publishing

    Google Scholar 

  • Krok B, Mohammadian S, Noll HM, Surau C, Markwort S, Fritzsche A, Meckenstock RU (2022) Remediation of zinc-contaminated groundwater by iron oxide in situ adsorption barriers–From lab to the field. Sci Total Environ 807:151066

    Article  CAS  Google Scholar 

  • Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials 7(9):243

    Article  Google Scholar 

  • Kukovecz Á, Kozma G, Kónya Z (2013) Multi-walled carbon nanotubes. In: Springer handbook of nanomaterials. Springer, Berlin, Heidelberg, pp 147–188

    Google Scholar 

  • Kumar S, Dinesha P, Bran I (2017) Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: an experimental analysis. Energy 140:98–105

    Google Scholar 

  • Kuznetsova OV, Timerbaev AR (2022) Magnetic nanoparticles for highly robust, facile and efficient loading of metal-based drugs. J Inorg Biochem 227:111685

    Article  CAS  Google Scholar 

  • Lande MB, Phatake VR, Chavha PB, Chaudhari MP, Raundal SS, Salunke HJ (2020) Role of nanotechnology to control water pollution. IJRBAT Issue (Special-15):113–116

    Google Scholar 

  • Larry W (2006) World water day. A billion people worldwide lack safe drinking

    Google Scholar 

  • Lee IS, Lee N, Park J, Kim BH, Yi YW, Kim T, Hyeon T (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J Am Chem Soc 128(33):10658–10659

    Google Scholar 

  • Lee JE et al (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44(10):893–902

    Article  CAS  Google Scholar 

  • LewisOscar F et al (2016) Algal nanoparticles: synthesis and biotechnological potentials. Algae-Org Imminent Biotechnol 7:157–182

    Google Scholar 

  • Li X, Lenhart JJ, Walker HW (2012) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28(2):1095–1104

    Article  CAS  Google Scholar 

  • Liang DW, Yang YH, Xu WW, Peng SK, Lu SF, Xiang Y (2014) Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: mechanism and kinetics. J Hazard Mater 278:592–596

    Article  CAS  Google Scholar 

  • Lin ST, Thirumavalavan M, Jiang TY, Lee JF (2014) Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes. Carbohyd Polym 105:1–9

    Article  CAS  Google Scholar 

  • Lin Z, Pang S, Zhou Z, Wu X, Li J, Huang Y, Zhang W, Lei Q, Bhatt P, Mishra S, Chen S (2021) Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.127841

    Article  Google Scholar 

  • Ling L, Zhang W-X (2015) Enrichment and encapsulation of uranium with iron nanoparticle. J Am Chem Soc 137(8):2788–2791

    Article  CAS  Google Scholar 

  • Ling L, Pan B, Zhang WX (2015) Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se (IV). Water Res 71:274–281

    Article  CAS  Google Scholar 

  • Liu ET, Zhao H, Li H, Li G, Liu Y, Chen R (2014) Hydrothermal synthesis of porous α-Fe 2 O 3 nanostructures for highly efficient Cr (VI) removal. New J Chem 38(7):2911–2916

    Article  CAS  Google Scholar 

  • Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng

    Google Scholar 

  • Luo S, Ma C, Zhu MQ, Ju WN, Yang Y, Wang X (2020) Application of iron oxide nanoparticles in the diagnosis and treatment of neurodegenerative diseases with emphasis on Alzheimer’s disease. Front Cell Neurosci 14:21

    Article  CAS  Google Scholar 

  • Lv G, He F, Wang X, Gao F, Zhang G, Wang T, Gu Z (2008) Novel nanocomposite of nano Fe3O4 and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells. Langmuir 24(5):2151–2156

    Article  CAS  Google Scholar 

  • Machado S et al (2015) Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci Total Environ 533:76–81

    Article  CAS  Google Scholar 

  • Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964

    Google Scholar 

  • Malato S et al (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59

    Article  CAS  Google Scholar 

  • Mansha M et al (2016) Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties. Ceram Int 42(9):11490–11495

    Article  CAS  Google Scholar 

  • Mansoori GA, Soelaiman TF (2005) Nanotechnology—an introduction for the standards community. J ASTM Int 2(6):1–22

    Google Scholar 

  • Markova Z, Šišková KM, Filip J, Čuda J, Kolář M, Šafářová K, Zbořil R (2013) Air stable magnetic bimetallic Fe–Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environ Sci Technol 47(10):5285–5293

    Google Scholar 

  • Maszenan A et al (2011) Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules. Biotechnol Adv 29(1):111–123

    Article  CAS  Google Scholar 

  • Matricardi P, Pontoriero M, Coviello T, Casadei MA, Alhaique F (2008) In situ cross-linkable novel alginate-dextran methacrylate IPN hydrogels for biomedical applications: mechanical characterization and drug delivery properties. Biomacromol 9(7):2014–2020

    Article  CAS  Google Scholar 

  • Maximous N, Nakhla G, Wong K, Wan W (2010) Optimization of Al2O3/PES embranes for wastewater filtration. Sep Purif Technol 73(2):294–301

    Article  CAS  Google Scholar 

  • Mekonnen M, Hoekstra A (2016) Four billion people facing severe water scarcity. Sci Adv 2:e1500323

    Article  Google Scholar 

  • Mishima A (1992) Bitter sea: the human cost of minamata disease. Kosei Publishing Company

    Google Scholar 

  • Mitra N, Rezvan Z, Ahmad MS, Hosein MGM (2012) Studies of water arsenic and boron pollutants and algae phytoremediation in three springs. Iran Int J Ecosyst 2:32–37. Mohammadi

    Google Scholar 

  • Mohamed SF, Borik RM (2013) Modern trends in using marine algae for treatment of aquatic pollution. Int J ChemTech Res 5(6):2863–2889

    CAS  Google Scholar 

  • Mueller N, Nowack B (2009) Nanotechnology developments for the environment sector. Report of the observatory NANO

    Google Scholar 

  • Muradova G, Gadjieva S, Di Palma L, Vilardi G (2016) Nitrates removal by bimetallic nanoparticles in water. Chem Eng Trans 47:205–210

    Google Scholar 

  • Murray C, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  CAS  Google Scholar 

  • Naddeo V, et al (2011) Water, wastewater and soil treatment by advanced oxidation processes (AOPs). Edizioni ASTER

    Google Scholar 

  • Naseem T, Farrukh MA (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem

    Google Scholar 

  • Nassar NN (2012) Iron oxide nanoadsorbents for removal of various pollutants from wastewater: an overview. In: Bhatnagar A (ed) Application of adsorbents for water pollution control. Bentham Science Publishers, Sharjah, United Arab Emirates, pp 81–118

    Google Scholar 

  • Oscar FL et al (2014) Deciphering the diversity of microalgal bloom in wastewater-an attempt to construct potential consortia for bioremediation. J Cur Per Appl Microbiol 2278:92

    Google Scholar 

  • Owa F (2014) Water pollution: sources, effects, control and management. Int Lett Nat Sci 3

    Google Scholar 

  • Painter TJ (1983) Algal polysaccharides. Elsevier, The polysaccharides, pp 195–285

    Book  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167

    Article  CAS  Google Scholar 

  • Perez JM (2007) Iron oxide nanoparticles: hidden talent. Nat Nanotechnol 2(9):535–536

    Article  CAS  Google Scholar 

  • Pérez-de-Luque A et al (2012) Effect of amphotericin B nanodisks on plant fungal diseases. Pest Manag Sci 68(1):67–74

    Article  Google Scholar 

  • Pokropivny V, Skorokhod V (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng, C 27(5–8):990–993

    Article  CAS  Google Scholar 

  • Prakash S, Sharma N, Ahmad A, Sinha GP (2011) Synthesis of Agnps by bacilus cereus bacteria and their antimicrobial potential. J Biomater Nanobiotechnol 2(2):15–161

    Google Scholar 

  • Prema P, Veeramanikandan V, Rameshkumar K, Gatasheh MK, Hatamleh AA, Balasubramani R, Balaji P (2022) Statistical optimization of silver nanoparticle synthesis by green tea extract and its efficacy on colorimetric detection of mercury from industrial waste water. Environ Res 204:111915

    Article  CAS  Google Scholar 

  • Qadir M et al (2007) Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agric Water Manag 87(1):2–22

    Article  Google Scholar 

  • Ramacharyulu P et al (2015) Iron phthalocyanine modified mesoporous titania nanoparticles for photocatalytic activity and CO 2 capture applications. Phys Chem Chem Phys 17(39):26456–26462

    Article  CAS  Google Scholar 

  • Ramakrishniah C et al (2009) Assessment of water quality index for the groundwater in Tumkur Taluk. E-J Chem 6(2):523–530

    Article  Google Scholar 

  • Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad AJ, Shim YY, Cho JY (2020) Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers 12(4):855

    Article  CAS  Google Scholar 

  • Rawal I, Kaur A (2013) Synthesis of mesoporous polypyrrole nanowires/nanoparticles for ammonia gas sensing application. Sens Actuators A Phys 203:92–102

    Article  CAS  Google Scholar 

  • Reshma S et al (2011) Bioremediation technologies. World Congress of Biotechnology, India

    Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26:223–235

    Article  CAS  Google Scholar 

  • Saifuddin N et al (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6(1):61–70

    CAS  Google Scholar 

  • Sajjadi M, Ahmadpoor F, Nasrollahzadeh M, Ghafuri H (2021) Lignin-derived (nano)materials for environmental pollution remediation: Current challenges and future perspectives. Int J Biol Macromol 178:394–423. https://doi.org/10.1016/j.ijbiomac.2021.02.165

    Article  CAS  Google Scholar 

  • Sanguansri P, Augustin MA (2006) Nanoscale materials development–a food industry perspective. Trends Food Sci Technol 17(10):547–556

    Article  CAS  Google Scholar 

  • Santhosh C, Malathi A, Dhaneshvar E, Bhatnagar A, Grace AN, Madhavan J (2019) Iron oxide nanomaterials for water purification. In: Nanoscale materials in water purification. Elsevier, pp 431–446

    Google Scholar 

  • Sarojini G, Babu SV, Rajasimman M (2022) Adsorptive potential of iron oxide based nanocomposite for the sequestration of Congo red from aqueous solution. Chemosphere 287:132371

    Article  CAS  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nano Res 7(4):331–342

    Article  CAS  Google Scholar 

  • Savage N, Wentsel R (2008) Draft nanomaterial research strategy. EPA’s Office of Research and Development, Washington DC, USA

    Google Scholar 

  • Saxena G, Bharagava RN (2019). Bioremediation of industrial waste for environmental safety: volume I: industrial waste and its management. Springer

    Google Scholar 

  • Schneidewind H et al (2012) The morphology of silver nanoparticles prepared by enzyme-induced reduction. Beilstein J Nanotechnol 3(1):404–414

    Article  Google Scholar 

  • Scott CD, Woodward CA, Thompson JE (1989) Solute diffusion in biocatalyst gel beads containing biocatalysis and other additives. Enzyme Microb Technol 11(5):258–263

    Article  CAS  Google Scholar 

  • Sebri M (2017) Bridging the Maghreb’s water gap: from rationalizing the virtual water trade to enhancing the renewable energy desalination. Environ Dev Sustain 19(5):1673–1684. Available from: https://doi.org/10.1007/s10668-016-9820-9

  • Secretariat, U. N. W. W. A. P (2016) Water and jobs

    Google Scholar 

  • Serio F, Silvestri N, Avugadda SK, Nucci GE, Nitti S, Onesto V, Pellegrino T (2022) Co-loading of doxorubicin and iron oxide nanocubes in polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic effects on cancer cells. J Colloid Interface Sci 607:34–44

    Google Scholar 

  • Servos M et al (2005) Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants. Sci Total Environ 336(1–3):155–170

    Article  CAS  Google Scholar 

  • Shaalan M, et al (2016) Recent progress in applications of nanoparticles in fish medicine: a review. Nanomed Nanotechnol Biol Med 12(3):701–710

    Google Scholar 

  • Shabani N, Javadi A, Jafarizadeh-Malmiri H, Mirzaie H, Sadeghi J (2021) Potential application of iron oxide nanoparticles synthesized by co-precipitation technology as a coagulant for water treatment in settling tanks. Min Metall Explor 38(1):269–276

    Google Scholar 

  • Shanab S, Essa A, Shalaby E (2012) Bioremoval capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signal Behav 7:392–399

    Article  CAS  Google Scholar 

  • Shan G, Yan S, Tyagi RD, Surampalli RY, Zhang TC (2009) Applications of nanomaterials in environmental science and engineering. Practice periodical of hazardous, toxic, and radioactive waste management. 13(2):110–119

    Google Scholar 

  • Sharma A et al (2016) Algae as crucial organisms in advancing nanotechnology: a systematic review. J Appl Phycol 28(3):1759–1774

    Article  CAS  Google Scholar 

  • Sharma G, Jasuja ND, Kumar M, Ali MI (2015) Biological synthesis of silver nanoparticles by cell-free extract of spirulina platensis. J Nanotechnol 2015:1–6

    Google Scholar 

  • Shimomura M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci 6(1):11–16

    Article  CAS  Google Scholar 

  • Shin W-K et al (2016) Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO 2 nanoparticles for lithium-ion polymer batteries. Sci Rep 6:26332

    Article  CAS  Google Scholar 

  • Singh G, Babele PK, Kumar A, Srivastava A, Sinha RP, Tyagi MB (2014) Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine. J Photochem Photobiol B: Biol 138:55–62

    Google Scholar 

  • Singh MR, Gupta A (2017) Water pollution-sources, effects and control

    Google Scholar 

  • Smith A (2006) Opinion: nanotech—the way forward for clean water? Filt Sep 43(8):32–33

    Article  Google Scholar 

  • Steiner TS, et al (2006) Infectious diarrhea: new pathogens and new challenges in developed and developing areas. The University of Chicago Press

    Google Scholar 

  • Suárez S et al (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Bio/Technol 7(2):125–138

    Article  Google Scholar 

  • Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R (2015) Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 27(5):1861–1869

    Google Scholar 

  • Sushma D, Richa S (2015) Use of nanoparticles in water treatment: a review. Int Res J Environ Sci 4(10):103–106

    Google Scholar 

  • Tai CY et al (2007) Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Ind Eng Chem Res 46(17):5536–5541

    Article  CAS  Google Scholar 

  • Taniguchi N (1974) On the basic concept of nanotechnology. In: Proceeding of the ICPE

    Google Scholar 

  • Thakkar KN, et al (2010) Biological synthesis of metallic nanoparticles. Nanomedicine Nanotechnol Biol Med 6(2):257–262

    Google Scholar 

  • Tiwari DK, et al (2008) Application of nanoparticles in waste water treatment 1

    Google Scholar 

  • Tiwari JN et al (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental clean. Nano Today 1(2):44–48

    Google Scholar 

  • Tudge C (1991) Global Ecology. The Natural History Museum

    Google Scholar 

  • UNICEF W et al (2012) WHO (2012) Progress on drinking water and sanitation: 2012 Update. New York

    Google Scholar 

  • Urase T, Kikuta T (2005) Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Res 39(7):1289–1300

    Article  CAS  Google Scholar 

  • Vallabani NS, Singh S (2018) Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 8(6):279

    Google Scholar 

  • Venkateshaiah A, Silvestri D, Wacławek S, Ramakrishnan RK, Krawczyk K, Saravanan P, Dionysiou DD (2022) A comparative study of the degradation efficiency of chlorinated organic compounds by bimetallic zero-valent iron nanoparticles. Environ Sci Water Res Technol 8(1):162–172

    Google Scholar 

  • Vieno N et al (2006) Removal of pharmaceuticals in drinking water treatment: effect of chemical coagulation. Environ Technol 27(2):183–192

    Article  CAS  Google Scholar 

  • Vigneswaran S, Ngo H, Visvanathan C, Sundarvadivel M (2009) Wastewater recycle, reuse, and reclamation. Conv Water Treat Technol 1(2)

    Google Scholar 

  • Wang Y, Wang S, Niu H, Ma Y, Zeng T, Cai Y, Meng Z (2013) Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1283:20–26

    Article  CAS  Google Scholar 

  • WWAP (2017) The United Nations World Water Development Report. Place de Fontenoy Paris, France

    Google Scholar 

  • Xin X, Wei Q, Yang J, Yan L, Feng R, Chen G, Du B, Li H (2012) Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chem Eng J 184:132–140

    Google Scholar 

  • Xiong Z, Lai B, Yang P, Zhou Y, Wang J, Fang S (2015) Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration. J Hazard Mater 297:261–268

    Article  CAS  Google Scholar 

  • Xu B, Li Y, Gao Y, Liu S, Lv D, Zhao S, Ge L (2019) Ag-AgI/Bi3O4Cl for efficient visible light photocatalytic degradation of methyl orange: the surface plasmon resonance effect of Ag and mechanism insight. Appl Catal B: Environ 246:140–148

    Google Scholar 

  • Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Warner MG et al (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41(14):5114–5119

    Google Scholar 

  • Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IM, Mohamad Ibrahim MN, et al (2020a) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8:341

    Google Scholar 

  • Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MN (2020b) Role of nanomaterials in the treatment of wastewater: a review. Water 12(2):495

    Article  CAS  Google Scholar 

  • Yaqoob AA, Umar K, Ibrahim MNM (2020c) Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications—a review. Appl Nanosci 10(5):1369–1378

    Article  CAS  Google Scholar 

  • Yazdanparast S, Benvidi A, Azimzadeh M, Tezerjani MD, Ghaani MR (2020) Experimental and theoretical study for miR-155 detection through resveratrol interaction with nucleic acids using magnetic core-shell nanoparticles. Microchim Acta 187(8):1–10

    Article  Google Scholar 

  • Yunus IS, Harwin Kurniawan A, Adityawarman D, Indarto A (2012) Nanotechnologies in water and air pollution treatment. Environ Technol Rev 1:136–148. https://doi.org/10.1080/21622515.2012.733966

    Article  CAS  Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani AR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage 181:817–831

    Article  CAS  Google Scholar 

  • Zhang Y, Liu Y, Jung YM (2019) SERS study of Ag/FeS/4-MBA interface based on the SPR effect. Spectrochim Acta Part A Mol Biomol Spectrosc 219:147–153

    Article  Google Scholar 

  • Zhou Z, Wu X, Lin Z, Pang S, Mishra S, Chen S (2021) Biodegradation of fipronil: current state of mechanisms of biodegradation and future perspectives. Appl Microbiol Biotechnol 105:7695–7708

    Article  CAS  Google Scholar 

  • Zou J, Zhang W, Poe D, Qin J, Fornara A, Zhang Y, Pyykkö I et al (2010) MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear. Nanomedicine 5(5):739–754

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham M. Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, E.M., El-Shehawy, A.S. (2023). Metallic Nanoparticles and Bioremediation for Wastewater Treatment. In: Shah, M.P. (eds) Advanced Application of Nanotechnology to Industrial Wastewater. Springer, Singapore. https://doi.org/10.1007/978-981-99-3292-4_11

Download citation

Publish with us

Policies and ethics