Skip to main content

Smart Drug Nanoparticles from Microorganisms and Drug Delivery

  • Chapter
  • First Online:
Microbial Processes for Synthesizing Nanomaterials

Abstract

Smart drug nanoparticles are a type of drug delivery system that uses nanomaterials, typically made of biocompatible materials such as lipids or polymers, to deliver drugs to specific parts of the body. These nanoparticles can be designed to target specific cells or tissues and can be engineered to release drugs in response to certain triggers, such as changes in pH or temperature, etc. Microorganisms, such as bacteria or fungi, can be used to produce these nanoparticles, either through genetic engineering or using naturally occurring nanoparticles produced by the microorganisms. The use of smart drug nanoparticles has the potential to improve the efficacy and safety of many different types of drugs and is an active area of research in the field of drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMS:

Magnetosomes

CK:

Chemokines

CQDs:

Carbon quantum dots

DDS:

Drug delivery system

EPR:

Enhanced permeability and retention

EVS:

Extracellular vehicles

GIT:

Gastrointestinal tract

IL:

Interleukins

MPS:

Mononuclear phagocyte system

MRI:

Magnetic resonance imaging

MSNS:

Mesoporous silica nanoparticles

MTB:

Magnetotactic bacteria

PEG:

Polyethylene glycol

TNF:

Tumour necrotic factor

TNT:

Titanium nanotubes

TTIS:

Time-temperature indicators

UV:

Ultraviolet

References

  • Abdel-Ghany TM, Ganash M, Bakri MM, Al-Rajhi AM (2018) Molecular characterization of Trichoderma asperellum and lignocellulolytic activity on barley straw treated with silver nanoparticles. Bioresources 13(1):1729–1744

    Article  CAS  Google Scholar 

  • Abdo AM, Fouda A, Eid AM, Fahmy NM, Elsayed AM, Khalil AMA, Alzahrani OM, Ahmed AF, Soliman AM (2021) Green synthesis of zinc oxide nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and their activity against pathogenic microbes and common house mosquito, Culex pipiens. Materials 14(22):6983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed A-A, Hamzah H, Maaroof M (2018) Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity. Turk J Biol 42(1):54–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ajaz S, Ahmed T, Shahid M, Noman M, Shah AA, Mehmood MA, Abbas A, Cheema AI, Iqbal MZ, Li B (2021) Bioinspired green synthesis of silver nanoparticles by using a native Bacillus sp. strain AW1-2: characterization and antifungal activity against Colletotrichum falcatum Went. Enzym Microb Technol 144:109745

    Article  CAS  Google Scholar 

  • Al-Dhabi NA, Ghilan A-KM, Arasu MV, Duraipandiyan V (2018a) Green biosynthesis of silver nanoparticles produced from marine Streptomyces sp. Al-Dhabi-89 and their potential applications against wound infection and drug resistant clinical pathogens. J Photochem Photobiol B Biol 189:176–184

    Article  CAS  Google Scholar 

  • Al-Dhabi NA, Mohammed Ghilan A-K, Arasu MV (2018b) Characterization of silver nanomaterials derived from marine Streptomyces sp. al-dhabi-87 and its in vitro application against multidrug resistant and extended-spectrum beta-lactamase clinical pathogens. Nanomaterials 8(5):279

    Article  PubMed  PubMed Central  Google Scholar 

  • Alghuthaymi MA, Abd-Elsalam KA, AboDalam HM, Ahmed FK, Ravichandran M, Kalia A, Rai M (2022) Trichoderma: An eco-friendly source of nanomaterials for sustainable agroecosystems. J Fungi 8(4):367

    Article  CAS  Google Scholar 

  • Alvarez-Lorenzo C, Concheiro A (2014) Smart drug delivery systems: from fundamentals to the clinic. Chem Commun 50(58):7743–7765

    Article  CAS  Google Scholar 

  • Alvarez-Lorenzo C, Concheiro A (2019) Smart drug release from medical devices. J Pharmacol Exp Ther 370(3):544–554

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Lorenzo C, Puga AM, Concheiro A (2012) Nanostructures and nanostructured networks for smart drug delivery. Biomimetic Approach Biomater Dev 14:417–458

    Article  Google Scholar 

  • Ameen F, Alsamhary K, Alabdullatif JA, Al Nadhari S (2021) A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol Environ Saf 213:112027

    Article  CAS  PubMed  Google Scholar 

  • Anik MI, Hossain MK, Hossain I, Mahfuz A, Rahman MT, Ahmed I (2021) Recent progress of magnetic nanoparticles in biomedical applications: a review. Nano Select 2(6):1146–1186

    Article  CAS  Google Scholar 

  • Arshad R, Pal K, Sabir F, Rahdar A, Bilal M, Shahnaz G, Kyzas GZ (2021) A review of the nanomaterials use for the diagnosis and therapy of salmonella typhi. J Mol Struct 1230:129928

    Article  CAS  Google Scholar 

  • Ashengroph M, Hosseini S-R (2021) A newly isolated Bacillus amyloliquefaciens SRB04 for the synthesis of selenium nanoparticles with potential antibacterial properties. Int Microbiol 24:103–114

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi M, Bayat M, Mortazavi P, Hashemi SJ, Meimandipour A (2020) Antimicrobial effect of chitosan–silver–copper nanocomposite on Candida albicans. J Nanostruct Chem 10:87–95

    Article  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldi F, Daniele S, Gallo M, Paganelli S, Battistel D, Piccolo O, Faleri C, Puglia AM, Gallo G (2016) Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells. BioMetals 29:321–331

    Article  CAS  PubMed  Google Scholar 

  • Banerjee D, Shivapriya P, Gautam PK, Misra K, Sahoo AK, Samanta SK (2020) A review on basic biology of bacterial biofilm infections and their treatments by nanotechnology-based approaches. Proc Natl Acad Sci Biol Sci 90:243–259

    Article  CAS  Google Scholar 

  • Bardania H, Raheb J, Mohammad-Beigi H, Rasekh B, Arpanaei A (2013) Desulfurization activity and reusability of magnetite nanoparticle–coated Rhodococcus erythropolis FMF and R. erythropolis IGTS8 bacterial cells. Biotechnol Appl Biochem 60(3):323–329

    Article  CAS  PubMed  Google Scholar 

  • Bhagat Y, Gangadhara K, Rabinal C, Chaudhari G, Ugale P (2015) Nanotechnology in agriculture: a review. J Pure App Microbiol 9:737–747

    Google Scholar 

  • Bhattacharjee R, Kumar L, Mukerjee N, Anand U, Dhasmana A, Preetam S, Bhaumik S, Sihi S, Pal S, Khare T (2022) The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: a two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity. Biomed Pharmacother 155:113658

    Article  CAS  PubMed  Google Scholar 

  • Bolbanabad EM, Ashengroph M, Darvishi F (2020) Development and evaluation of different strategies for the clean synthesis of silver nanoparticles using Yarrowia lipolytica and their antibacterial activity. Process Biochem 94:319–328

    Article  CAS  Google Scholar 

  • Borghese R, Brucale M, Fortunato G, Lanzi M, Mezzi A, Valle F, Cavallini M, Zannoni D (2017) Reprint of “Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus”. J Hazard Mater 324:31–38

    Article  CAS  PubMed  Google Scholar 

  • Boroumand Moghaddam A, Namvar F, Moniri M, Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20(9):16540–16565

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhry N, Dwivedi S, Chaudhry V, Singh A, Saquib Q, Azam A, Musarrat J (2018) Bio-inspired nanomaterials in agriculture and food: current status, foreseen applications and challenges. Microb Pathog 123:196–200

    Article  CAS  PubMed  Google Scholar 

  • Chhipa H (2019) Mycosynthesis of nanoparticles for smart agricultural practice: a green and eco-friendly approach. In: Green synthesis, characterization and applications of nanoparticles. Elsevier, Amsterdam, pp 87–109

    Chapter  Google Scholar 

  • Chifiriuc MC, Holban AM, Curutiu C, Ditu L-M, Mihaescu G, Oprea AE, Grumezescu AM, Lazar V (2016) Antibiotic drug delivery systems for the intracellular targeting of bacterial pathogens. In: Smart drug delivery system. IntechOpen, London

    Google Scholar 

  • Chourabi K, Elleuch L, Kloula S, Landoulsi A, Chatti A (2021) Antimicrobial and antibiofilm effects of silver nanoparticles produced by Yarrowia lipolytica against vegetative and starved shigella. Nano 16(8):2150088

    Article  CAS  Google Scholar 

  • Colililaa M (2013) Smart drug delivery from silica nanoparticles. Smart Mater Drug Delivery 2:63

    Article  Google Scholar 

  • David A, Kumar R, Jeba DP, Ashli J, Mathavan A (2022) Microbial synthesis of Pt nanoparticles–a nano review. ECS Trans 107(1):19627

    Article  Google Scholar 

  • Deb R, Pal P, Chaudhary P, Bhadsavle S, Behera M, Gautam D, Roshan M, Vats A, Ludri A, Gupta VK (2022) Development of gold nanoparticle-based visual assay for rapid detection of Escherichia coli specific DNA in milk of cows affected with mastitis. LWT 155:112901

    Article  CAS  Google Scholar 

  • Dhanasekaran S, Chopra S (2016) Getting a handle on smart drug delivery systems–A comprehensive view of therapeutic targeting strategies. Smart Drug Delivery Syst 1:31–62

    Google Scholar 

  • Ding M, Zhao W, Song L-J, Luan S-F (2022) Stimuli-responsive nanocarriers for bacterial biofilm treatment. Rare Metals 41(2):482–498

    Article  CAS  PubMed  Google Scholar 

  • Dolatabadi A, Noorbazargan H, Khayam N, Moulavi P, Zamani N, Asghari Lalami Z, Ashrafi F (2021) Ecofriendly biomolecule-capped Bifidobacterium bifidum-manufactured silver nanoparticles and efflux pump genes expression alteration in Klebsiella pneumoniae. Microb Drug Resist 27(2):247–257

    Article  CAS  PubMed  Google Scholar 

  • Dolly S, Pandey A, Pandey BK, Gopal R (2015) Process parameter optimization and enhancement of photo-biohydrogen production by mixed culture of Rhodobacter sphaeroides NMBL-02 and Escherichia coli NMBL-04 using Fe-nanoparticle. Int J Hydrog Energy 40(46):16010–16020

    Article  CAS  Google Scholar 

  • Duarte KD, Frattini D, Kwon Y (2019) High performance yeast-based microbial fuel cells by surfactant-mediated gold nanoparticles grown atop a carbon felt anode. Appl Energy 256:113912

    Article  CAS  Google Scholar 

  • Edison LK, Pradeep N (2020) Actinobacterial nanoparticles: green synthesis, evaluation and applications. In: Green nanoparticles: synthesis and biomedical applications. Elsevier, London, pp 371–384

    Chapter  Google Scholar 

  • El-Batal AI, Al-Hazmi NE, Mosallam FM, El-Sayyad GS (2018) Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microb Pathog 118:159–169

    Article  CAS  PubMed  Google Scholar 

  • Elshafei AM, Othman AM, Elsayed MA, Al-Balakocy NG, Hassan MM (2021) Green synthesis of silver nanoparticles using Aspergillus oryzae NRRL447 exogenous proteins: optimization via central composite design, characterization and biological applications. Environ Nanotechnol Monit Manage 16:100553

    CAS  Google Scholar 

  • Fonseca MS, Rodrigues DM, Sokolonski AR, Stanisic D, Tomé LM, Góes-Neto A, Azevedo V, Meyer R, Araújo DB, Tasic L (2022) Activity of Fusarium oxysporum-based silver nanoparticles on Candida spp. oral isolates. Nanomaterials 12(3):501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouda A, Awad MA, Eid AM, Saied E, Barghoth MG, Hamza MF, Awad MF, Abdelbary S, Hassan SE-D (2021) An eco-friendly approach to the control of pathogenic microbes and anopheles stephensi malarial vector using magnesium oxide nanoparticles (Mg-NPs) fabricated by Penicillium chrysogenum. Int J Mol Sci 22(10):5096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahlawat G, Choudhury AR (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9(23):12944–12967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Yu Z, Liu B, Yang J, Yang X, Yu Y (2020) A smart drug delivery system responsive to pH/enzyme stimuli based on hydrophobic modified sodium alginate. Eur Polym J 133:109779

    Article  CAS  Google Scholar 

  • Gheorghiu M, Polonschii C, Popescu O, Gheorghiu E (2021) Advanced optogenetic-based biosensing and related biomaterials. Materials 14(15):4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giese EC, Silva DD, Costa AF, Almeida SG, Dussán KJ (2020) Immobilized microbial nanoparticles for biosorption. Crit Rev Biotechnol 40(5):653–666

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Song X, Gao Y, Gong S, Wang Y, Han J (2018) Microbiological synthesis of zinc sulfide nanoparticles using Desulfovibrio desulfuricans. Inorg Nano-Metal Chem 48(2):96–102

    Article  CAS  Google Scholar 

  • Guerra JD, Sandoval G, Avalos-Borja M, Pestryakov A, Garibo D, Susarrey-Arce A, Bogdanchikova N (2020) Selective antifungal activity of silver nanoparticles: a comparative study between Candida tropicalis and Saccharomyces boulardii. Colloid Interf Sci Commun 37:100280

    Article  CAS  Google Scholar 

  • Gupta P, Rai N, Verma A, Saikia D, Singh SP, Kumar R, Singh SK, Kumar D, Gautam V (2022) Green-based approach to synthesize silver nanoparticles using the fungal endophyte penicillium oxalicum and their antimicrobial, antioxidant, and in vitro anticancer potential. ACS Omega. https://doi.org/10.1021/acsomega.2c05605

  • Haldar C, Nath S (2020) Nanotechnology: A novel technique for aquaculture and fisheries development. Int J Fauna Biol Stud 7(6):23–27

    Google Scholar 

  • Hamidi M, Jafari H, Siminska-Stanny J, Okoro OV, Fatimi A, Shavandi A (2022) Anionic exopolysaccharide from Cryptococcus laurentii 70766 as an alternative for alginate for biomedical hydrogels. Int J Biol Macromol 212:370–380

    Article  CAS  PubMed  Google Scholar 

  • Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A (2022) Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials 12(3):457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermida-Montero L, Pariona N, Mtz-Enriquez AI, Carrión G, Paraguay-Delgado F, Rosas-Saito G (2019) Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusarium oxysporum. J Hazard Mater 380:120850

    Article  CAS  PubMed  Google Scholar 

  • Herrmann IK, Wood MJA, Fuhrmann G (2021) Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol 16(7):748–759

    Article  CAS  PubMed  Google Scholar 

  • Hosseinidoust Z, Mostaghaci B, Yasa O, Park B-W, Singh AV, Sitti M (2016) Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev 106:27–44

    Article  CAS  PubMed  Google Scholar 

  • Hsueh Y-H, Lin K-S, Ke W-J, Hsieh C-T, Chiang C-L, Tzou D-Y, Liu S-T (2015) The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS One 10(12):e0144306

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Zeng Z, Song Z, Chen A, Zeng G, Xiao R, He K, Yuan L, Li H, Chen G (2020) Antimicrobial efficacy and mechanisms of silver nanoparticles against Phanerochaete chrysosporium in the presence of common electrolytes and humic acid. J Hazard Mater 383:121153

    Article  CAS  PubMed  Google Scholar 

  • Hussein EAM, Mohammad AA-H, Harraz FA, Ahsan MF (2019) Biologically synthesized silver nanoparticles for enhancing tetracycline activity against staphylococcus aureus and klebsiella pneumoniae. Braz Arch Biol Technol 2019:62

    Google Scholar 

  • Ilahi N, Haleem A, Iqbal S, Fatima N, Sajjad W, Sideeq A, Ahmed S (2022) Biosynthesis of silver nanoparticles using endophytic Fusarium oxysporum strain NFW16 and their in vitro antibacterial potential. Microsc Res Tech 85(4):1568–1579

    Article  CAS  PubMed  Google Scholar 

  • Iswarya A, Anjugam M, Gopi N, Shanthi S, Govindarajan M, Alharbi NS, Kadaikunnan S, Alharbi MS, Sivakamavalli J, Vaseeharan B (2022) β-1, 3-Glucan binding protein-based silver nanoparticles enhance the wound healing potential and disease resistance in Oreochromis mossambicus against Aeromonas hydrophilla. Microb Pathog 162:105360

    Article  CAS  PubMed  Google Scholar 

  • Janku F, Zhang HH, Pezeshki A, Goel S, Murthy R, Wang-Gillam A, Shepard DR, Helgason T, Masters T, Hong DS (2021) Intratumoral injection of clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors phase I study of intratumoral clostridium novyi-NT. Clin Cancer Res 27(1):96–106

    Article  CAS  PubMed  Google Scholar 

  • Jassal PS, Kaur D, Prasad R, Singh J (2022) Green synthesis of titanium dioxide nanoparticles: development and applications. J Agric Food Res 10:100361. https://doi.org/10.1016/j.jafr.2022.100361

    Article  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Zhang P, Sun H, Dai Y, Liang S, Bai X, Feng L (2021) Optimization of nanoparticles for smart drug delivery: a review. Nanomaterials 11(11):2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin M, Zhao Q, Zhou Z, Zhu L, Zhang Z, Jiang L (2020) Draft genome sequence of a potential organic phosphorus-degrading bacterium Brevibacterium frigoritolerans GD44, isolated from radioactive soil in Xinjiang, China. Curr Microbiol 77:2896–2903

    Article  CAS  PubMed  Google Scholar 

  • Jouzani GS, Valijanian E, Sharafi R (2017) Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 101:2691–2711

    Article  CAS  PubMed  Google Scholar 

  • Juvet T, Mari A, Lajkosz K, Wallis CJ, Kuk C, Erlich A, Krimus L, Fleshner NE, Kulkarni GS, Zlotta AR (2020) Sequential administration of Bacillus Calmette-Guerin (BCG) and Electromotive Drug Administration (EMDA) of mitomycin C (MMC) for the treatment of high-grade nonmuscle invasive bladder cancer after BCG failure. In: Urologic oncology: seminars and original investigations, vol 11. Elsevier, Amsterdam, p 850

    Google Scholar 

  • Kalaimurugan D, Vivekanandhan P, Sivasankar P, Durairaj K, Senthilkumar P, Shivakumar MS, Venkatesan S (2019) Larvicidal activity of silver nanoparticles synthesized by Pseudomonas fluorescens YPS3 isolated from the Eastern Ghats of India. J Clust Sci 30:225–233

    Article  CAS  Google Scholar 

  • Karthikeyan C, Varaprasad K, Venugopal SK, Shakila S, Venkatraman B, Sadiku R (2021) Biocidal (bacterial and cancer cells) activities of chitosan/CuO nanomaterial, synthesized via a green process. Carbohydr Polym 259:117762

    Article  CAS  PubMed  Google Scholar 

  • Kaur T, Bala M, Kumar G, Vyas A (2022) Biosynthesis of zinc oxide nanoparticles via endophyte Trichoderma viride and evaluation of their antimicrobial and antioxidant properties. Arch Microbiol 204(10):620

    Article  CAS  PubMed  Google Scholar 

  • Kavitha A, Doss A, Pole RPP, Pushpa Rani TPK, Prasad R, Satheesh S (2023) A mini review on plant-mediated zinc oxide nanoparticles and their antibacterial potency. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2023.102654

  • Khan MI, Hossain MI, Hossain MK, Rubel M, Hossain K, Mahfuz A, Anik MI (2022) Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Appl Biomater 5(3):971–1012

    Article  CAS  Google Scholar 

  • Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A (2018) Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 123:505–526

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Song KB (2018) Antimicrobial activity of buckwheat starch films containing zinc oxide nanoparticles against Listeria monocytogenes on mushrooms. Int J Food Sci Technol 53(6):1549–1557

    Article  CAS  Google Scholar 

  • Kim K, Bou-Ghannam S, Kameishi S, Oka M, Grainger DW, Okano T (2021) Allogeneic mesenchymal stem cell sheet therapy: a new frontier in drug delivery systems. J Control Release 330:696–704

    Article  CAS  PubMed  Google Scholar 

  • Kiran GS, Sabu A, Selvin J (2010) Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol 148(4):221–225

    Article  CAS  PubMed  Google Scholar 

  • Koch N, Sonowal S, Prasad R (2023) Elucidate the smart tailored biogenic nanoparticles and their applications in remediation. Biotechnol Genet Eng Rev. https://doi.org/10.1080/02648725.2023.2219942

  • Komiyama M, Shigi N, Ariga K (2022) DNA-based nanoarchitectures as eminent vehicles for smart drug delivery systems. Adv Funct Mater 2022:2200924

    Article  Google Scholar 

  • Konar M, Nayak N, Priyadarsini S, Mishra M, Sahoo H (2019) Antimicrobial activity of nanoparticle-based dental fillers on novel chromogenic bacteria Enterobacter ludwigii. Mater Res Express 6(8):085407

    Article  CAS  Google Scholar 

  • Kong X, Liu Y, Huang X, Huang S, Gao F, Rong P, Zhang S, Zhang K, Zeng W (2019) Cancer therapy based on smart drug delivery with advanced nanoparticles. Anti Cancer Agents Med Chem 19(6):720–730

    Article  CAS  Google Scholar 

  • Kumar R, Gautam PK, Chandra A, Sharma VK (2014) Hydrogels-a novel a nd smart drug delivery system: an updated review. World J Pharm Res 2014:13

    Google Scholar 

  • Kuyukina MS, Makarova MV, Pistsova ON, Glebov GG, Osipenko MA, Ivshina IB (2022) Exposure to metal nanoparticles changes zeta potentials of Rhodococcus cells. Heliyon 8(11):e11632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzajewska D, Wszołek A, Żwierełło W, Kirczuk L, Maruszewska A (2020) Magnetotactic bacteria and magnetosomes as smart drug delivery systems: a new weapon on the battlefield with cancer? Biology 9(5):102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalitha K, Kalaimurgan D, Nithya K, Venkatesan S, Shivakumar MS (2020) Antibacterial, antifungal and mosquitocidal efficacy of copper nanoparticles synthesized from entomopathogenic nematode: Insect–host relationship of bacteria in secondary metabolites of Morganella morganii sp.(PMA1). Arab J Sci Eng 45:4489–4501

    Article  CAS  Google Scholar 

  • Lee S, Ahn J-H, Choi H, Seo J-M, Cho D, Koo K (2015) Natural magnetic nanoparticle containing droplet for smart drug delivery and heat treatment. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, New York, pp 3541–3544

    Chapter  Google Scholar 

  • Lemos TS, de Souza JF, Fajardo AR (2021) Magnetic microspheres based on pectin coated by chitosan towards smart drug release. Carbohydr Polym 265:118013

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Fan J, Ju D (2018) Neurotoxicity concern about the brain targeting delivery systems. In: Brain targeted drug delivery systems: a focus on nanotechnology and nanoparticulates. Academic, Cambridge, pp 377–408

    Google Scholar 

  • Li Z, Fan J, Tong C, Zhou H, Wang W, Li B, Liu B, Wang W (2019) A smart drug-delivery nanosystem based on carboxylated graphene quantum dots for tumor-targeted chemotherapy. Nanomedicine 14(15):2011–2025

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ahmad W, Rong Y, Chen Q, Zuo M, Ouyang Q, Guo Z (2020) Designing an aptamer based magnetic and upconversion nanoparticles conjugated fluorescence sensor for screening Escherichia coli in food. Food Control 107:106761

    Article  CAS  Google Scholar 

  • Li S, Yue H, Wang S, Li X, Wang X, Guo P, Ma G, Wei W (2022) Advances of bacteria-based delivery systems for modulating tumor microenvironment. Adv Drug Deliv Rev 2022:114444

    Article  Google Scholar 

  • Liu S, Qamar SA, Qamar M, Basharat K, Bilal M (2021) Engineered nanocellulose-based hydrogels for smart drug delivery applications. Int J Biol Macromol 181:275–290

    Article  CAS  PubMed  Google Scholar 

  • Mahfuz A, Hossain MK, Khan MI, Hossain I, Anik MI (2022) Smart drug-delivery nanostructured systems for cancer therapy. Elsevier, Amsterdam

    Google Scholar 

  • Maddela NR, Chakraborty S, Prasad R (2021) Nanotechnology for advances in medical microbiology. Springer Singapore. (ISBN 978-981-15-9915-6) https://www.springer.com/gp/book/9789811599156

    Book  Google Scholar 

  • Manivasagan P, Kim J, Jang E-S (2022) Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics. Coord Chem Rev 470:214701

    Article  CAS  Google Scholar 

  • Marathe K, Naik J, Maheshwari V (2021) Biogenic synthesis of silver nanoparticles using Streptomyces spp. and their antifungal activity against Fusarium verticillioides. J Clust Sci 32:1299–1309

    Article  CAS  Google Scholar 

  • Mohammed AN, Attia AS (2022) Control of biofilm-producing Aeromonas bacteria in the water tanks and drinkers of broiler poultry farms using chitosan nanoparticle-based coating thyme oil. Iraqi J Vet Sci 36(3):659–669

    Article  Google Scholar 

  • Mohd Yusof H, Mohamad R, Zaidan UH, Rahman NAA (2020) Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4. Microb Cell Factories 19:1–17

    Article  Google Scholar 

  • Muras A, Romero M, Mayer C, Otero A (2021) Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 41(4):609–627

    Article  CAS  PubMed  Google Scholar 

  • Oh D, Lee S, Kim J, Choi H, Seo J, Koo K-I (2014) Magnetically guided micro-droplet using biological magnetic material for smart drug delivery system. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society. IEEE, New York, pp 1390–1393

    Google Scholar 

  • Oliveira E, Santos HM, Jorge S, Rodríguez-González B, Novio F, Lorenzo J, Ruiz-Molina D, Capelo JL, Lodeiro C (2019) Sustainable synthesis of luminescent CdTe quantum dots coated with modified silica mesoporous nanoparticles: towards new protein scavengers and smart drug delivery carriers. Dyes Pigments 161:360–369

    Article  CAS  Google Scholar 

  • Ozalp VC, Eyidogan F, Oktem HA (2011) Aptamer-gated nanoparticles for smart drug delivery. Pharmaceuticals 4(8):1137–1157

    Article  CAS  PubMed Central  Google Scholar 

  • Pallavi S, Rudayni HA, Bepari A, Niazi SK, Nayaka S (2022) Green synthesis of Silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi J Biol Sci 29(1):228–238

    Article  Google Scholar 

  • Park J, Chariou PL, Steinmetz NF (2020) Site-specific antibody conjugation strategy to functionalize virus-based nanoparticles. Bioconjug Chem 31(5):1408–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil MP, Kim G-D (2018) Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf B Biointerfaces 172:487–495

    Article  CAS  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014:963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, International Publishing Switzerland. (ISBN: 978-3-319-42989-2)

    Book  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)

    Book  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing. (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

    Book  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017a) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural Polymers for Drug Delivery. CAB International, Wallingford, pp 53–70

    Chapter  Google Scholar 

  • Prasad R, Kumar M, Kumar V (2017b) Nanotechnology: an agriculture paradigm. Springer Nature Singapore Pte Ltd. (ISBN: 978-981-10-4573-8)

    Book  Google Scholar 

  • Prasad R, Kumar V, Kumar M (2017c) Nanotechnology: food and environmental paradigm. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-4678-0)

    Book  Google Scholar 

  • Prema P, Ranjani SS, Kumar KR, Veeramanikandan V, Mathiyazhagan N, Nguyen V-H, Balaji P (2022) Microbial synthesis of silver nanoparticles using Lactobacillus plantarum for antioxidant, antibacterial activities. Inorg Chem Commun 136:109139

    Article  CAS  Google Scholar 

  • Qin Y, Zhao R, Qin H, Chen L, Chen H, Zhao Y, Nie G (2021) Colonic mucus-accumulating tungsten oxide nanoparticles improve the colitis therapy by targeting Enterobacteriaceae. Nano Today 39:101234

    Article  CAS  Google Scholar 

  • Qu J, Zhao X, Ma PX, Guo B (2018) Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater 72:55–69

    Article  CAS  PubMed  Google Scholar 

  • Rajesh S, Dharanishanthi V, Kanna AV (2015) Antibacterial mechanism of biogenic silver nanoparticles of Lactobacillus acidophilus. J Exp Nanosci 10(15):1143–1152

    Article  CAS  Google Scholar 

  • Rajkumar R, Ezhumalai G, Gnanadesigan M (2021) A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity. Environ Technol Innov 21:101282

    Article  CAS  Google Scholar 

  • Rao SV, Anuhya E, Padmalatha K (2019) Nanoparticles: a smart drug delivery. J Drug Delivery Therapeut 9(2):590–593

    CAS  Google Scholar 

  • Rather M, Sharma R, Aklakur M, Ahmad S, Kumar N, Khan M, Ramya V (2011) Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini-review. Fish Aquac J 16(1-5):3

    Google Scholar 

  • Reshetnikov VV, Smolskaya SV, Feoktistova SG, Verkhusha VV (2022) Optogenetic approaches in biotechnology and biomaterials. Trends Biotechnol 40:858–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano I, Vitiello G, Gallucci N, Di Girolamo R, Cattaneo A, Poli A, Di Donato P (2022) Extremophilic microorganisms for the green synthesis of antibacterial nanoparticles. Microorganisms 10(10):1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roychoudhury A (2020) Yeast-mediated green synthesis of nanoparticles for biological applications. Indian J Pharm Biol Res 8(3):26–31

    CAS  Google Scholar 

  • Rozene J, Morkvenaite-Vilkonciene I, Bruzaite I, Dzedzickis A, Ramanavicius A (2021) Yeast-based microbial biofuel cell mediated by 9, 10-phenantrenequinone. Electrochim Acta 373:137918

    Article  CAS  Google Scholar 

  • Salem MF, Tayel AA, Alzuaibr FM, Bakr RA (2022) Innovative approach for controlling black rot of persimmon fruits by means of nanobiotechnology from nanochitosan and rosmarinic acid-mediated selenium nanoparticles. Polymers 14(10):2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambi M, Qorri B, Malardier-Jugroot C, Szewczuk M (2017) Advancements in polymer science: ‘smart’ drug delivery systems for the treatment of cancer. MOJ Polym Sci 1:113–118

    Google Scholar 

  • Sanchez-Moreno P, Ortega-Vinuesa JL, Peula-Garcia JM, Marchal JA, Boulaiz H (2018) Smart drug-delivery systems for cancer nanotherapy. Curr Drug Targets 19(4):339–359

    Article  CAS  PubMed  Google Scholar 

  • Santos LM, Stanisic D, Menezes UJ, Mendonça MA, Barral TD, Seyffert N, Azevedo V, Durán N, Meyer R, Tasic L (2019) Biogenic silver nanoparticles as a post-surgical treatment for Corynebacterium pseudotuberculosis infection in small ruminants. Front Microbiol 10:824

    Article  PubMed  PubMed Central  Google Scholar 

  • Saravanakumar K, Wang M-H (2018) Trichoderma based synthesis of anti-pathogenic silver nanoparticles and their characterization, antioxidant and cytotoxicity properties. Microb Pathog 114:269–273

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam S, Krishnaswamy S, Chandrababu R, Veerabagu U, Pugazhendhi A, Mathimani T (2020) Optimal immobilization of Trichoderma asperellum laccase on polymer coated Fe3O4@ SiO2 nanoparticles for enhanced biohydrogen production from delignified lignocellulosic biomass. Fuel 273:117777

    Article  CAS  Google Scholar 

  • Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10(9):3223–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui J, Taheri M, Alam AU, Deen MJ (2022) Nanomaterials in smart packaging applications: a review. Small 18(1):2101171

    Article  CAS  Google Scholar 

  • Singh P, Kim YJ, Singh H, Mathiyalagan R, Wang C, Yang DC (2015) Biosynthesis of anisotropic silver nanoparticles by Bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. J Nanomater 2015:4–4

    Article  Google Scholar 

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016a) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC (2016b) Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artif Cells Nanomed Biotechnol 44(6):1569–1575

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Singh BR, Gupta VK, Kharwar RN, Pecoraro L (2018) Coating with microbial hydrophobins: a novel approach to develop smart drug nanoparticles. Trends Biotechnol 36(11):1103–1106

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Naik B, Kumar V, Kumar V, Gupta S (2021) Actinobacterial pigment assisted synthesis of nanoparticles and its biological activity: nanoparticles and its biological activity. J Microbiol Biotechnol Food Sci 10(4):604–608

    Article  CAS  Google Scholar 

  • Soliman KA, Ullah K, Shah A, Jones DS, Singh TR (2019) Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov Today 24(8):1575–1586

    Article  CAS  PubMed  Google Scholar 

  • Soltani Nejad M, Samandari Najafabadi N, Aghighi S, Pakina E, Zargar M (2022) Evaluation of phoma sp. biomass as an endophytic fungus for synthesis of extracellular gold nanoparticles with antibacterial and antifungal properties. Molecules 27(4):1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spagnuolo G, Genovese F, Fortunato L, Simeone M, Rengo C, Tatullo M (2019) The impact of optogenetics on regenerative medicine. Appl Sci 10(1):173

    Article  Google Scholar 

  • Srinath B, Namratha K, Byrappa K (2018) Eco-friendly synthesis of gold nanoparticles by Bacillus subtilis and their environmental applications. Adv Sci Lett 24(8):5942–5946

    Article  Google Scholar 

  • Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A (2021) Biological nanofactories: using living forms for metal nanoparticle synthesis. Mini-Rev Med Chem 21(2):245–265

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Hu Q, Ji W, Wright G, Gu Z (2017) Leveraging physiology for precision drug delivery. Physiol Rev 97(1):189–225

    Article  Google Scholar 

  • Sundaramanickam A, Maharani V (2021) Antibiotic and antioxidant activities biogenic silver nanoparticles synthesized using Escherichia coli (VM1) bacterium

    Google Scholar 

  • Szalewski DA, Hinrichs VS, Zinniel DK, Barletta RG (2018) The pathogenicity of Aspergillus fumigatus, drug resistance, and nanoparticle delivery. Can J Microbiol 64(7):439–453

    Article  CAS  PubMed  Google Scholar 

  • Tarver S, Gray D, Loponov K, Das DB, Sun T, Sotenko M (2019) Biomineralization of Pd nanoparticles using Phanerochaete chrysosporium as a sustainable approach to turn platinum group metals (PGMs) wastes into catalysts. Int Biodeterior Biodegrad 143:104724

    Article  CAS  Google Scholar 

  • Tračuma E, Loca D (2020) Hyaluronic acid/polylysine composites for local drug delivery: a review. Key Eng Mater 850:213–218

    Article  Google Scholar 

  • Uddin MS (2019) Nanoparticles as nanopharmaceuticals: smart drug delivery systems. In: Nanoparticulate drug delivery systems. Apple Academic Press, Palm Bay, pp 85–120

    Chapter  Google Scholar 

  • Unsoy G, Gunduz U (2018) Smart drug delivery systems in cancer therapy. Curr Drug Targets 19(3):202–212

    Article  CAS  PubMed  Google Scholar 

  • Veeramalini J, Kumar PS, Selvakumari IA, Sreejith R (2022) Process amelioration for production of biohydrogen using mutated Rhodobacter M 19 and Enterobacter aerogenesco-culture: Influence of nanoparticles. Fuel 317:123558

    Article  CAS  Google Scholar 

  • Velea AI, Vollebregt S, Hosman T, Pak A, Giagka V (2019) Towards a microfabricated flexible graphene-based active implant for tissue monitoring during optogenetic spinal cord stimulation. In: 2019 IEEE 14th nanotechnology materials and devices conference (NMDC). IEEE, New York, pp 1–5

    Google Scholar 

  • Ventura-Aguilar RI, Díaz-Galindo EP, Bautista-Baños S, Mendoza-Acevedo S, Munguía-Cervantes JE, Correa-Pacheco ZN, Bosquez-Molina E (2021) Monitoring the infection process of Rhizopus stolonifer on strawberry fruit during storage using films based on chitosan/polyvinyl alcohol/polyvinylpyrrolidone and plant extracts. Int J Biol Macromol 182:583–594

    Article  CAS  PubMed  Google Scholar 

  • Vyshnava SS, Kanderi DK, Panjala SP, Pandian K, Bontha RR, Goukanapalle PKR, Banaganapalli B (2016) Effect of silver nanoparticles against the formation of biofilm by Pseudomonas aeruginosa an in silico approach. Appl Biochem Biotechnol 180:426–437

    Article  CAS  PubMed  Google Scholar 

  • Vyshnava SS, Pandluru G, Kanderi DK, Panjala SP, Banapuram S, Paramasivam K, Anupalli RR, Bontha RR, Dowlatabad MR (2020) Gram scale synthesis of QD 450 core–shell quantum dots for cellular imaging and sorting. Appl Nanosci 10:1257–1268

    Article  CAS  Google Scholar 

  • Vyshnava SS, Kanderi DK, Dowlathabad MR (2022a) Confocal laser scanning microscopy study of intercellular events in filopodia using 3-mercaptopropoinc acid capped CdSe/ZnS quantum dots. Micron 153:103200

    Article  CAS  PubMed  Google Scholar 

  • Vyshnava SS, Pandluru G, Kumar KD, Panjala SP, Banapuram S, Paramasivam K, Devi KV, Anupalli RR, Dowlatabad MR (2022b) Quantum dots based in-vitro co-culture cancer model for identification of rare cancer cell heterogeneity. Sci Rep 12(1):5868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC (2016a) Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol 44(4):1127–1132

    CAS  PubMed  Google Scholar 

  • Wang Q, Jian-Ying H, Li H-Q, Chen Z, Zhao AZ-J, Wang Y, Ke-Qin Z, Hong-Tao S, Al-Deyab SS, Lai Y-K (2016b) TiO2 nanotube platforms for smart drug delivery: a review. Int J Nanomedicine 11:4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Yang C, Saleh MA, Alotaibi MD, Mohamed ME, Xu D, Gu T (2022) Conductive magnetite nanoparticles considerably accelerated carbon steel corrosion by electroactive Desulfovibrio vulgaris biofilm. Corros Sci 205:110440

    Article  CAS  Google Scholar 

  • Weeranantanapan O, Chudapongse N, Limphirat W, Nantapong N (2022) Streptomyces chiangmaiensis SSUT88A mediated green synthesis of silver nanoparticles: characterization and evaluation of antibacterial action against clinical drug-resistant strains. RSC Adv 12(7):4336–4345

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Ji J, Shen J (2008) Synthesis of near-infrared responsive gold nanorod/pnipaam core/shell nanohybrids via surface initiated atrp for smart drug delivery. Macromol Rapid Commun 29(8):645–650

    Article  CAS  Google Scholar 

  • Xu P, Zuo H, Chen B, Wang R, Ahmed A, Hu Y, Ouyang J (2017) Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma. Sci Rep 7(1):1–16

    Google Scholar 

  • Yang J, Kim EK, McDowell A, Kim Y-K (2018) Microbe-derived extracellular vesicles as a smart drug delivery system. Transl Clin Pharmacol 26(3):103

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao Q, Kou L, Tu Y, Zhu L (2018) MMP-responsive ‘smart’ drug delivery and tumor targeting. Trends Pharmacol Sci 39(8):766–781

    Article  CAS  PubMed  Google Scholar 

  • Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IM, Qari HA, Umar K, Mohamad Ibrahim MN (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh Y-C, Huang T-H, Yang S-C, Chen C-C, Fang J-Y (2020) Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem 8:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Fan T, Chen W, Li Y, Wang B (2020) Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioactive Mater 5(4):1071–1086

    Article  Google Scholar 

  • Zhao S, Chen Z, Khan A, Wang J, Kakade A, Kulshrestha S, Liu P, Li X (2021) Elevated Cr (VI) reduction in a biocathode microbial fuel cell without acclimatization inversion based on strain Corynebacterium vitaeruminis LZU47-1. Int J Hydrog Energy 46(4):3193–3203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mr. Satyanarayana Swamy Vyshnava sincerely acknowledges the partial financial support from the Indian Council of Medical Research, New Delhi, India, in the form of a Senior Research Fellowship (ICMR File No. 5/3/8/81/ITR-F/2020-ITR). The authors also sincerely make our gratitude to mention the Department of Biotechnology, Sri Krishnadevaraya University, India, for providing the immense lab resources and support to complete this research chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vyshnava, S.S., Swetha, K., Dowlathabad, M.R. (2023). Smart Drug Nanoparticles from Microorganisms and Drug Delivery. In: Maddela, N.R., Rodríguez Díaz, J.M., Branco da Silva Montenegro, M.C., Prasad, R. (eds) Microbial Processes for Synthesizing Nanomaterials . Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2808-8_11

Download citation

Publish with us

Policies and ethics