Skip to main content

Towards the Development of Climate-Resilient Crops

  • Chapter
  • First Online:
TILLING and Eco-TILLING for Crop Improvement
  • 103 Accesses

Abstract

Sudden and drastic climate changes are being experienced around the World. Uncertain weather conditions along with increasing population and reducing agriculturally productive land force researchers and plant breeders to look for the development of future crops that are amenable to adaptation to ever-changing environments. The development of such climate-resilient crops is the only hope to sustain global food security in the coming decade. Development of varieties and hybrids that perform only in favorable agro-climatic conditions with high nutrient input led to narrow diverse crops, mostly pure lines, stringently selected for yield, with limited attention to nutrition, and possessing limited geographical adaptation. Challenging climatic conditions are posing a threat to modern cultivars and indicating risks to future crop production and productivity. So, there is an urgent need to develop crops by exploring and exploiting novel alleles from crop germplasm through a genomics approach. Gene Tilling is a proven, fast approach to creating new alleles and diversifying crop germplasm. So, the desired future crop improvement efforts must include plans to exploit new alleles and use a proven molecular breeding approach to pyramid desired alleles and breed new generation high-yielding, nutritious, and climate-resilient crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BC:

Before Christ

CO2:

Carbon dioxide

EMS:

Ethyl methane sulfonate

FAO:

Food and Agriculture Organisation

IAEA:

International Atomic Energy Agency

RNA:

Ribonucleic acid

TILLING:

Targeting Local Lesion in Genome

References

  • Bough R, Dayan FE (2022) Biochemical and structural characterization of quizalofop-resistant wheat acetyl-CoA carboxylase. Sci Rep 12:679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Gan Z, Wang Y, Lu S, Hou Z, Li H, Xian H, Liu B, Kong F, Dong L (2020) The soybean gene J contributes to salt stress tolerance by up-regulating salt-responsive genes front. Plant Sci 11:272. https://doi.org/10.3389/fpls.2020.00272

    Article  Google Scholar 

  • Comastri A, Janni M, Simmonds J, Uauy C, Pignone D, Nguyen HT, Marmiroli N (2018) Heat in wheat: exploit reverse genetic techniques to discover new alleles within the Triticum durum sHsp26 family. Front Plant Sci 9:1337

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui H (2021) Challenges and approaches to crop improvement through C3-to-C4 engineering front. Plant Sci 12:715391

    Google Scholar 

  • Da-Luz VK et al (2021) Identification of rice mutants tolerant to cold stress at the germination stage by TILLING. CABI Books. CABI International. https://doi.org/10.1079/9781789249095.0011

    Book  Google Scholar 

  • Ding H, He J, Wu Y, Wu X, Ge C, Wang Y, Zhong S, Peiter E, Liang J, Xu W (2018) The tomato mitogen-activated protein kinase SlMPK1 is as a negative regulator of the high-temperature stress response. Plant Physiol 177:633–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dockter C, Gruszka D, Braumann I, Druka A, Druka I, Franckowiak J, Gough SP, Janeczko A, Kurowska M, Lundqvist J, Lundqvist U, Marzec M, Matyszczak I, Müller AH, Oklestkova J, Schulz B, Zakhrabekova S, Hansson M (2014) Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol 166(4):1912–1927

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2022) World Food and Agriculture – Statistical Yearbook 2022. Rome

    Google Scholar 

  • Gobena D, Shimels M, Rich PJ, Ruyter-Spira C, Bouwmeester H, Kanuganti S et al (2017) Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes striga resistance. Proc Natl Acad Sci 114:4471–4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Qin F, Zang G, Kang Z, Zou H, Hu F, Yue C, Li X, Wang G (2013) Mutation of OsDET1 increases chlorophyll content in rice. Plant Sci 210:241–249

    Article  CAS  PubMed  Google Scholar 

  • Hui Z, Tian FX, Wang GK, Wang GP, Wang W (2012) The antioxidative defense system is involved in the delayed senescence in a wheat mutant tasg1. Plant Cell Rep 31(6):1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, Marmiroli N (2020) Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J Exp Bot 71(13):3780–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kargiotidou A, Kappas I, Tsaftaris A, Galanopoulou D, Farmaki T (2010) Cold acclimation and low temperature resistance in cotton: Gossypium hirsutum phospholipase Dα isoforms are differentially regulated by temperature and light. J Exp Bot 61(11):2991–3002

    Article  CAS  PubMed  Google Scholar 

  • Kost A, Perales H, Wijeratne S, Wijeratne A, Stockinger E, MercerKost KL et al (2017) Differentiated transcriptional signatures in the maize landraces of Chiapas. Mexico Matthew BMC Genomics 18:707. https://doi.org/10.1186/s12864-017-4005-y

    Article  CAS  Google Scholar 

  • Kumar P, Sharma PK (2020) Soil salinity and food security in India. Front Sustain Food Syst 06. https://doi.org/10.3389/fsufs.2020.533781

  • Lethin J, Shakil SSM, Hassan S et al (2020) Development and characterization of an EMS-mutagenized wheat population and identification of salt-tolerant wheat lines. BMC Plant Biol 20:18. https://doi.org/10.1186/s12870-019-2137-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng L, Chen R, Jiang Q et al (2021) GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol 105:333–345

    Article  Google Scholar 

  • Mishra S, Mk S, Snehal S, Pathak H (2017) C4 Rice—tweaking rice physiology for second green revolution int. J Curr Microbiol Appl Sci 6(12):1161–1176

    Article  Google Scholar 

  • Navarro-León E, López-Moreno FJ, Torre-González A, Rui JM, Esposito S, Blasco B (2020) Study of salt-stress tolerance and defensive mechanisms in Brassica rapa CAX1a TILLING mutants. Environ Exp Bot 175:104061

    Article  Google Scholar 

  • Ontl TA, Schulte LA (2012) Soil carbon storage. Nature Education Knowledge 3(10):35

    Google Scholar 

  • Otero A, Goni C, Jifon JL, Syvertsen JP (2011) High temperature effects on citrus orange leaf gas exchange, flowering, fruit quality and yield. Acta Hortic 903(903):1069–1075

    Article  Google Scholar 

  • Qin H, Li Y, Huang R (2020) Advances and challenges in the breeding of salt-tolerant rice. Int J Mol Sci 21(21):8385. https://doi.org/10.3390/ijms21218385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MS et al. (2018) Impact of climate change on soil salinity: a remote sensing based investigation in Coastal Bangladesh. 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), 1–5, doi: 10.1109/Agro-Geoinformatics.2018.8476036

    Google Scholar 

  • Shu QY, Forster BP (2011) Plant mutagenesis in crop improvement: basic terms and applications. In: Forster BP, Shu QY, Nakagawa H (eds) Plant mutation breeding and biotechnology Joint FAO/IAEA Programme. Guttenberg Press, Malta, pp 9–20

    Google Scholar 

  • Viana VE, Pegoraro C, Busanello C, Oliveira AC (2019) Mutagenesis in rice: the basis for breeding a new super plant. Front Plant Sci 10:1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wang R, Wang Y, Zhang L, Yao S (2020) A point mutation in LTT1 enhances cold tolerance at the booting stage in rice. Plant Cell Environ 43:992–1007. https://doi.org/10.1111/pce.13717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan W, Deng XW, Yang C, Tang X (2021) The genome-wide EMS mutagenesis bias correlates with sequence context and chromatin structure in Rice. Front Plant Sci. https://doi.org/10.3389/fpls.2021.579675

  • Yona N (2015) Genetic characterization of heat tolerant (HT) upland mutant rice (Oryza sativa L.) lines selected from rice genotypes. Master thesis, University of Agriculture Morogoro, Tanzania

    Google Scholar 

  • Zhang Y, Tateishi-Karimata H, Endoh T, Jin Q, Li K, Fan X, Ma Y, Gao L, Lu H, Wang Z, Cho AE, Yao X, Liu C, Sugimoto N, Guo S, Fu X, Shen Q, Xu G, Herrera-Estrella LR, Fan X (2022) High-temperature adaptation of an OsNRT2.3 allele is thermoregulated by small RNAs. Sci Adv 8:47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mani, E. (2023). Towards the Development of Climate-Resilient Crops. In: Bhattacharya, A., Parkhi, V., Char, B. (eds) TILLING and Eco-TILLING for Crop Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-99-2722-7_9

Download citation

Publish with us

Policies and ethics