Skip to main content

Mutagenesis in Somatic Cell and Tissue

  • Chapter
  • First Online:
TILLING and Eco-TILLING for Crop Improvement

Abstract

Mutagenesis in somatic cells and tissues of the plant is a common phenomenon that is ultimately passed on to the gametes and subsequently to the next generations resulting in the formation of mosaicism in plants. The accumulation of somatic mutation depends on the structure of the shoot apical meristem, branching pattern, and various other factors. Several biotic and abiotic stresses are also responsible for somatic mutation in plants. Identification of single nucleotide polymorphism caused due to natural or induced somatic mutation is an important key for crop trait improvement. This identification has been made possible in plants through the method of TILLING and EcoTILLING. Overall, this chapter provides an overview of various mutations occurring in somatic cells, the factors regulating them and how these variations can help identify gene function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EMS:

Ethyl-methane sulfonate

ROS:

Reactive Oxygen Species

SAM:

Shoot Apical Meristem

SNPs:

Single nucleotide polymorphisms

TILLING:

Targeting Induced Local Lesion In Genomes

UV rays:

Ultraviolet rays

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Ahnstrom G (1977) Radiobiology. In: Manual on Mutation Breeding. Second edition. Technical Reports Series IAEA. Vienna 119:21–27

    Google Scholar 

  • Barkley NA, Wang ML (2008) Application of TILLING and EcoTILLING as reverse genetic approaches to elucidate the function of genes in plants and animals. Curr Genomics 9:212–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyko A, Golubov A, Bilichak A, Kovalchuk I (2010) Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. Plant Cell Physiol 51:1066–1078

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Zemp F, Filkowski J, Kovalchuk I (2006) Double-strand break repair in plants is developmentally regulated. Plant Physiol 141:488–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brakke MK (1984) Mutations, the abberant ratio phenomenon, and virus infection of maize. Annu Rev Phytopathol 22:77–94

    Article  Google Scholar 

  • Brutovská E, Sámelová A, Dušička J, Mičieta K (2013) Ageing of trees: application of general ageing theories. Ageing Res Rev 12:855–866

    Article  PubMed  Google Scholar 

  • Buss LW (1983) Evolution, development, and the units of selection. PNAS 80:1387–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatgilialoglu C, O'Neill P (2001) Free radicals associated with DNA damage. Exp Geron 36:1459–1471

    Article  CAS  Google Scholar 

  • Comai L, Young K, Reynolds SH et al (2004) Efficient discovery of DNA polymorphisms in natural populations by eco-tilling. Plant J 37:778–786

    Article  CAS  PubMed  Google Scholar 

  • Cullis CA (1987) The generation of somatic and heritable variation in response to stress. Am Nat 130:S62–S73

    Article  Google Scholar 

  • Dermen H (1960) Nature of plant sports. Am Hortic Mag 39:123–173

    Google Scholar 

  • Dubrovina AS, Kiselev KV (2016) Age-associated alterations in the somatic mutation and DNA methylation levels in plants. Plant Biol 18:185–196

    Article  CAS  PubMed  Google Scholar 

  • Fulcher N, Sablowski R (2009) Hypersensitivity to DNA damage in plant stem cell niches. PNAS 106:20984–20988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L, Bohlmann J, Ellis BE, Douglas CJ, Cronk QC (2006) Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 15:1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Guza R, Ma L, Fang Q, Pegg AE, Tretyakova N (2009) Cytosine methylation effects on the repair of O6-methylguanines within CG dinucleotides. J Biol Chem 284:22601–22610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann HD, Kester DE (1983a) Plant propagation. Principles and practices, 4th edn. Prentice-Hall, Englewood Cliffs, NJ, USA

    Google Scholar 

  • Hartmann HT, Kester DE (1975) Plant propagation: principles and practices. Prentice-Hall

    Google Scholar 

  • Hartmann HT, Kester DE (1983b) Plant propagation: principles and practices. Prentice-Hall

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Holliday R, Grigg GW (1993) DNA methylation and mutation. Mutat Res/Fundamental and Molecular Mechanisms of Mutagenesis 285:61–67

    Article  CAS  PubMed  Google Scholar 

  • Howard HW (1970) Genetics of the potato. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kiselev KV, Ogneva ZV, Dubrovina AS, Suprun AR, Tyunin AP (2018) Altered somatic mutation level and DNA repair gene expression in Arabidopsis thaliana exposed to ultraviolet C, salt, and cadmium stresses. Acta Physiol Plant 40:1–10

    Article  CAS  Google Scholar 

  • Klekowski EJ (1988) Mutation, developmental selection, and plant evolution. Columbia Univ. Press, New York

    Book  Google Scholar 

  • Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genom 25:674–681

    Article  CAS  Google Scholar 

  • Lucht J, Mauch-Mani B, Steiner HY et al (2002) Pathogen stress increases somatic recombination frequency in Arabidopsis. Nat Genet 30:311–314

    Article  PubMed  Google Scholar 

  • Luria SE, Delbruck M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94:481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  CAS  PubMed  Google Scholar 

  • Meyerowitz EM (1997) Genetic control of cell division patterns in developing plants. Cell 88:299–308

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Sigel RK, Lippert B (2000) Heavy metal mutagenicity: insights from bioinorganic model chemistry. J Inorg Biochem 79:261–265

    Article  PubMed  Google Scholar 

  • Orive ME (2001) Somatic mutations in organisms with complex life histories. Theor Popul Biol 59:235–249

    Article  CAS  PubMed  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94

    Article  CAS  PubMed  Google Scholar 

  • Oudalova AA, Geras’kin SA, Dikarev VG, Evseeva TI, Dikareva NS (2005) Cytogenetic effects induced by low-level radiation in plant meristems. CARDIFF 2005:356

    Google Scholar 

  • Plomion C, Aury JM, Amselem J, Leroy T, Murat F et al (2018) Oak genome reveals facets of long lifespan. Nat Plants 4:440–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson KD, Jones P (2000) DNA methylation: past, present, and future directions. Carcinogenesis 21:461–467

    Article  CAS  PubMed  Google Scholar 

  • Roychowdhury R and Tah J (2013) Mutagenesis—A potential approach for crop improvement. In Crop improvement (pp. 149-187). Springer, Boston, MA

    Google Scholar 

  • Saini R, Singh AK, Dhanapal S, Saeed TH, Hyde GJ, Baskar R (2017) Brief temperature stress during reproductive stages alters meiotic recombination and somatic mutation rates in the progeny of Arabidopsis. BMC Plant Biol 17:1–11

    Article  Google Scholar 

  • Salomonson A (1996) Interactions between somatic mutations and plant development. Veg 127:71–75

    Article  Google Scholar 

  • Schoen DJ, Schultz ST (2019) Somatic mutation and evolution in plants. Annu Rev Ecol, Evol, System 50:49–73

    Article  Google Scholar 

  • Schuermann D, Molinier J, Fritsch O, Hohn B (2005) The dual nature of homologous recombination in plants. Trends Genet 21:172–181

    Article  CAS  PubMed  Google Scholar 

  • Schultz ST, Scofield DG (2009) Mutation accumulation in real branches: fitness assays for genomic deleterious mutation rate and effect in large-statured plants. Am Nat 174:163–175

    Article  PubMed  Google Scholar 

  • Shamel AD, Pomeroy CS (1936) Bud mutations in horticultural crops. J Hered 27:487–494

    Article  Google Scholar 

  • Sigurbjörnsson B (1983) Induced mutations. Crop Breeding:153–176

    Google Scholar 

  • Singh AK, Bashir T, Sailer C, Gurumoorthy V, Ramakrishnan AM, Dhanapal S et al (2015) Parental age affects somatic mutation rates in the progeny of flowering plants. Plant Physiol 168:247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KC (1992) Spontaneous mutagenesis: experimental, genetic and other factors. Mutat Res 277:139–162

    Article  CAS  PubMed  Google Scholar 

  • Sprague GF, McKinney HH, Greeley L (1963) Virus as a mutagenic agent in maize. Science 141:1052–1053

    Article  CAS  PubMed  Google Scholar 

  • Tadele Z (2016) Mutagenesis and TILLING to dissect gene function in plants. Curr Genomics 17:499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadele Z and Till BJ (2010) TILLING for mutations in model plants and crops. In Molecular techniques in crop improvement, 307-332, Springer, Dordrecht

    Google Scholar 

  • Thomas (2013) Senescence, ageing and death of the whole plant. New Phytol 197:696–711

    Article  PubMed  Google Scholar 

  • Thomas H (2002) Ageing in plants. Mech Ageing Dev 123:747–753

    Article  PubMed  Google Scholar 

  • Watson JM, Platzer A, Kazda A, Akimcheva S, Valuchova S, Nizhynska V, Nordborg M, Riha K (2016) Germline replications and somatic mutation accumulation are independent of vegetative life span in Arabidopsis. PNAS:11312226–11312231

    Google Scholar 

  • Webster AD, Smith RA, Watkins R (1986) Apple rootstock studies. I. Preliminary evaluations of several MM. 106× M. 27 hybrids. J Hort Sci 61:429–437

    Article  Google Scholar 

  • Whitham TG, Slobodchikoff CN (1981) Evolution by individuals, plant-herbivore interactions, and mosaics of genetic variability: the adaptive significance of somatic mutations in plants. Oecologia 49:287–292

    Article  PubMed  Google Scholar 

  • Yao Y, Kovalchuk I (2011) Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants. Mutat Res 707:61–66

    Article  CAS  PubMed  Google Scholar 

  • Youssoufian H, Pyeritz RE (2002) Mechanisms and consequences of somatic mosaicism in humans. Nat Rev Genet 3:748–758

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors acknowledge Director CSIR-National Botanical Research Institute, India for providing facilities and support during the study. This manuscript bears CSIR-NBRI communication number CSIR-NBRI_MS/2023/05/04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Chakrabarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Bhaduri, M., Kumari, M., Chakrabarty, D. (2023). Mutagenesis in Somatic Cell and Tissue. In: Bhattacharya, A., Parkhi, V., Char, B. (eds) TILLING and Eco-TILLING for Crop Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-99-2722-7_7

Download citation

Publish with us

Policies and ethics