Skip to main content

Impact of Environmental Conditions on Construction Materials Throughout Long-Term Surveys to Promote Preventive Conservation. Case Study of Courtyards Located in Mediterranean Climate

  • Chapter
  • First Online:
Building Engineering Facing the Challenges of the 21st Century

Abstract

This chapter presents the environmental conditions linked to the microclimate developed in the Mediterranean courtyards, in order to know the impact on the conservation of traditional building materials. Thus, this work aims to establish a relationship between environmental parameters (Temperature and Relative Humidity) and the preservation of plasterworks, wooden carpentries and ceilings, and tilings. Results will easily reveal which are the most adequate conditions of conservation of these materials and the influence of ambient conditions in the degradation process of materials present in the Courtyard of the Maidens (Royal Alcazar of Seville). To this end, a long-term monitoring of the environmental conditions of the Courtyard of the Maidens was carried out during 2021 and 2022 and the subsequent statistical analysis of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be mentioned that there are previous records of the environmental conditions of the RAS at different points, but made in a short period of time. These studies revealed that environmental conditions do not change substantially with visits [32]. For this reason, the fact that thousands of tourists daily circulate through the Courtyard of the Maidens can be ignored.

References

  1. Lucchi E (2018) Review of preventive conservation in museum buildings. J Cult Herit 29:180–193

    Article  Google Scholar 

  2. BOE Legislación Consolidada (2021) Ley 12/2007 del Patrimonio Histórico de Andalucía

    Google Scholar 

  3. Campos de Alvear R (2018) The maintenance and the preventive preservation measures of the cultural goods in the Royal Alcázar of Seville. Apuntes del Alcázar de Sevilla 18:71–87

    Google Scholar 

  4. AENOR (2012) Conservation of cultural property. Condition survey and report of built cultural heritage. EN 16096:2012

    Google Scholar 

  5. Camuffo D (2019) Microclimate for Cultural Heritage: Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments. Elsevier

    Google Scholar 

  6. Cook I, Johnston R, Selby K (2019) Climate Change and Cultural Heritage: A Landscape Vulnerability Framework. Journal of Island and Coastal Archaeology. https://doi.org/10.1080/15564894.2019.1605430

    Article  Google Scholar 

  7. AENOR (2011) UNE-EN 15759. Conservation of Cultural Property. Specifications for temperature and relative humidity to limit climate-induced mechanical damage in organic hygroscopic materials.

    Google Scholar 

  8. Ferreira C, Barrelas J, Silva A, et al (2021) Impact of environmental exposure conditions on the maintenance of facades’ claddings. Buildings 11

    Google Scholar 

  9. Costanzo V, Fabbri K, Schito E et al (2021) Microclimate monitoring and conservation issues of a Baroque church in Italy: a risk assessment analysis. Building Research and Information 1–19. https://doi.org/10.1080/09613218.2021.1899797

  10. Corgnati SP, Filippi M (2010) Assessment of thermo-hygrometric quality in museums: Method and in-field application to the ‘ Duccio di Buoninsegna’ exhibition at Santa Maria della Scala (Siena, Italy). J Cult Herit 11:345–349. https://doi.org/10.1016/j.culher.2009.05.003

    Article  Google Scholar 

  11. Zarzo M, Fernández-Navajas A, García-Diego FJ (2011) Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation. Sensors 11:8685–8710. https://doi.org/10.3390/s110908685

    Article  Google Scholar 

  12. Italiana N (1999) UNI 10829. Works of art of historical importance. Ambient conditions for the conservation. Measurement and analysis. [Beni di interesse storico e artistico. Condizioni ambientali di conservazione. Misurazione ed analisi.]. 1–24

    Google Scholar 

  13. Ansi/Ashrae (2004) ANSI/ASHRAE 55:2004 Thermal Environmental Conditions for Human Occupancy. Ashrae 30

    Google Scholar 

  14. PAS 198:2012 - Specification for managing environmental conditions for cultural collections – BSI British Standards

    Google Scholar 

  15. AENOR (2012) UNE-EN 15759–1. Conservation of cultural property. Indoor climate. Part 1: Guidelines for heating churches, chapels and other places of worship

    Google Scholar 

  16. Bonacina C, Baggio P, Cappelletti F et al (2015) The Scrovegni Chapel: The results of over 20 years of indoor climate monitoring. Energy and Buildings 95:144–152. https://doi.org/10.1016/j.enbuild.2014.12.018

    Article  Google Scholar 

  17. Bienvenido-Huertas D, León-Muñoz M, Martín-del-Río JJ, Rubio-Bellido C (2021) Analysis of climate change impact on the preservation of heritage elements in historic buildings with a deficient indoor microclimate in warm regions. Build Environ 200:107959. https://doi.org/10.1016/j.buildenv.2021.107959

    Article  Google Scholar 

  18. Zonno G, Aguilar R, Boroschek R, Lourenço PB (2019) Analysis of the long and short-term effects of temperature and humidity on the structural properties of adobe buildings using continuous monitoring. Eng Struct 196:109299. https://doi.org/10.1016/j.engstruct.2019.109299

    Article  Google Scholar 

  19. Costanzo V, Fabbri K, Schito E et al (2021) Microclimate monitoring and conservation issues of a Baroque church in Italy: a risk assessment analysis. Building Research and Information 49:729–747. https://doi.org/10.1080/09613218.2021.1899797

    Article  Google Scholar 

  20. Ramírez S, Zarzo M, Perles A, García-Diego FJ (2021) A methodology for discriminant time series analysis applied to microclimate monitoring of fresco paintings. Sensors (Switzerland) 21:1–29. https://doi.org/10.3390/s21020436

    Article  Google Scholar 

  21. Ranesi A, Posani M, Veiga R, Faria P (2022) A Discussion on Winter Indoor Hygrothermal Conditions and Hygroscopic Behaviour of Plasters in Southern Europe. Infrastructures 7:1–17. https://doi.org/10.3390/infrastructures7030038

    Article  Google Scholar 

  22. Tabales Rodríguez MÁ, Alejandre Sánchez FJ, Blasco López FJ, Vargas Lorenzo C (2017) 14C Chronological data and thermoluminiscence of islamic tapiales of the Real Alcazar of Seville. Journal of Archeology Architecture and Arts 4:51–57. https://doi.org/10.14195/2182-844X

  23. Tabales Rodríguez MÁ (2003) Investigaciones arqueológicas en el Patio de las Doncellas: Avance de resultados de la primera campaña (2002). Apuntes del Alcázar 4:2–6

    Google Scholar 

  24. Cañas Palop C (2006) Las armaduras de cubiertas mudéjares del palacio de Pedro I, del Alcázar de Sevilla: análisis integral y propuestas para la restauración. University of Seville, Tesis Doctoral

    Google Scholar 

  25. Mora Vicente GM, Ramírez López I (2015) Restauración del alfarje del rey en el Cuarto Real Alto. Apuntes del Alcázar de Sevilla 16:142–173

    Google Scholar 

  26. Villanueva Domínguez L, García Santos A (2001) Manual del yeso. CIE Inversiones Editoriales

    Google Scholar 

  27. Coba Peña AC (2017) La policromía del alfarje del Patio de las Doncellas. Tesis Doctoral, Universidad de Granada, Estudio técnico y ensayos de protección

    Google Scholar 

  28. Ramírez López I, Ramírez López I, Cañas Palop C (2006) Recuperación de la armadura del anteoratorio en el Cuarto Real Alto. Apuntes del Alcazar de Sevilla 7:40–77

    Google Scholar 

  29. Pérez Ferrer JC, Fernández Aguilera S (2008) Restauración de diecisiete puertas y ventanas del Palacio de Pedro I en el Real Alcázar de Sevilla. Apuntes del Alcázar de Sevilla 9:80–95

    Google Scholar 

  30. Ramírez López I, Ramírez López IM, Cañas Palop C (2011) Estudio y restauración armadura del comedor de familia. Apuntes del Alcazar de Sevilla 12:40–87

    Google Scholar 

  31. Cultrone G (2004) Estudio mineralógico-petrográfico y fisico-mecánico de ladrillos macizos para su aplicación en intervenciones del Patrimonio Histórico

    Google Scholar 

  32. Enríquez Díaz C, Baeza Álvarez JR (2019) A project for the restoration of the tilings of the ground floor of the mudéjar palace. Apuntes del Alcázar de Sevilla 19:65–77

    Google Scholar 

  33. Freyer D, Voigt W (2003) Crystallization and Phase Stability of CaSO4 and CaSO 4 - Based Salts. Monatshefte fur Chemie 134:693–719. https://doi.org/10.1007/s00706-003-0590-3

    Article  Google Scholar 

  34. Winkler EM, Wilhelm EJ (1970) Salt burst by hydration pressures in architectural stone in urban atmosphere. Geological Society of America Bulletin 81:567–572. https://doi.org/10.1130/0016-7606(1970)81[567:SBBHPI]2.0.CO;2

  35. Ritterbach L, Becker P (2020) Temperature and humidity dependent formation of CaSO4·xH2O (x = 0...2) phases. Global and Planetary Change 187 (10313:1–11. https://doi.org/10.1016/j.gloplacha.2020.103132

  36. Goossens E (2003) Moisture transfer properties of coated gypsum. Tesis Doctoral, Technische Universiteit Eindhoven, Eindhoven, The Netherlands

    Google Scholar 

  37. Mesquita CAC (2012) Revestimientos Continuos Interiores de Varias Capas con Características de Barrera de Vapor e Higroscopicidad. Polytechnic University of Madrid, Tesis Doctoral

    Book  Google Scholar 

  38. Correa Gómez E, Rubio Domene R (2014) El yeso. Las decoraciones de yeso en época nazarí. In: Manual de Buenas Prácticas. Restauración de madera, yeso y cerámica, Patronato. Consejería de Educación, Cultura y Deporte de la Junta de Andalucía. Patronato de la Alhambra y Generalife, Granada, pp 43–52

    Google Scholar 

  39. Cabrera Garrido JM (1972) La influencia de los contaminantes en el Patrimonio artístico Nacional. Economista Industrial 107:51–60

    Google Scholar 

  40. Calero Castillo AI, García Bueno A, López Cruz O, Medina Flórez VJ (2017) La policromía original de las yeserías del Patio de las Doncellas del Real Alcázar de Sevilla. Materiales constitutivos y técnicas de ejecución. Arqueología y Territorio Medieval 24:255–290. https://doi.org/10.17561/aytm.v24i0.9

  41. Viitanen H, Ojanen T (2007) Improved Model to Predict Mold Growth in Building Materials. In: Thermal Performance of the Exterior Envelopes of Whole Buildings X–Proceedings CD. pp 2–7

    Google Scholar 

  42. Tsongas GA, Rioroan F (2016) Minimum conditions for visible mold growth. ASHRAE J 58:32–43

    Google Scholar 

  43. Michalski S (2009) Temperatura Incorrecta. Canadian Conservation Institute ICCROM

    Google Scholar 

  44. Sanz Arauz D (2009) Análisis del yeso empleado en revestimientos exteriores mediante técnicas geológicas. Doctoral dissertation, Universidad Politécnica de Madrid

    Google Scholar 

  45. Pérez-Peña N, Valenzuela L, Diaz-vaz JE, Ananías RA (2011) Prediction of equilibrium moisture content in wood in relation to the specific gravity of the cell wall and environmental variables. Maderas: Ciencia y Tecnologia 13:253–266. https://doi.org/10.4067/S0718-221X2011000300002

  46. Loffer L (2022) Acceptable Moisture Levels in Wood – Knowing the Moisture Content. https://www.wagnermeters.com/moisture-meters/wood-info/acceptable-moisture-levels-wood/. Accessed 6 Dec 2022

  47. Imamura H, Kiguchi M (1999) Prediction of wood decay in the exterior wall of wooden houses by the deterioration of nails. Durability of Building Materials and Components 8, Vols 1–4, Proceedings 1995:746–755\r2954

    Google Scholar 

  48. Glass S V., Zelinka SL (2015) Moisture Relations and Physical Properties of Wood. In: FPL-GTR-282. pp 1–20

    Google Scholar 

  49. Rajčić V, Skender A, Damjanović D (2018) An innovative methodology of assessing the climate change impact on cultural heritage. International Journal of Architectural Heritage 12:21–35. https://doi.org/10.1080/15583058.2017.1354094

    Article  Google Scholar 

  50. Sabbioni C, Brimblecombe P, Cassar M (2010) The Atlas of Climate Change Impact on European Cultural Heritage: Scientific Analysis and Management Strategies. Anthem Press, London, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Blasco-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blasco-López, F.J. et al. (2023). Impact of Environmental Conditions on Construction Materials Throughout Long-Term Surveys to Promote Preventive Conservation. Case Study of Courtyards Located in Mediterranean Climate. In: Bienvenido-Huertas, D., Durán-Álvarez, J. (eds) Building Engineering Facing the Challenges of the 21st Century. Lecture Notes in Civil Engineering, vol 345. Springer, Singapore. https://doi.org/10.1007/978-981-99-2714-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2714-2_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2713-5

  • Online ISBN: 978-981-99-2714-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics