Skip to main content

Automated Retinal Blood Vessel Segmentation Using Modified U-Net Architecture

  • Conference paper
  • First Online:
Proceedings of the 4th International Conference on Communication, Devices and Computing (ICCDC 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1046))

Included in the following conference series:

  • 235 Accesses

Abstract

Robotized tracking of vein structures is becoming a crucial aspect for better analysis of vascular ailment. Diabetes is an internationally predominant illness. The retinal images of diabetic patients are used for determining the severity level. This work utilizing profound learning procedure could significantly benefit in effective identification. In spite of the fact that we utilize just a little part of pictures (1/4) in preparing however are helped with higher picture goals. An essential aspect in determining the existence of many eye disorders and heart issues is the status of the blood vessels in the retina. The segmentation of blood vessels in fundus pictures has become quite popular for this reason. This study suggests a method for segmenting blood vessels using a modified U-net architecture. These outcomes propose that a profound learning framework could expand the expense adequacy of screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96(5):614–618

    Article  Google Scholar 

  2. Mitchell P, Cumming RG, Attebo K, Panchapakesan J (1997) Prevalence of cataract in Australia: the Blue Mountains eye study. Ophthalmology 104(4):581–588

    Article  Google Scholar 

  3. Congdon N, Vingerling JR, Klein BE, West S, Friedman DS, Kempen J, O’Colmain B, Wu S-Y, Taylor HR (2004) Prevalence of cataract and pseudophakia/aphakia among adults in the United States. Arch Ophthalmol (Chicago, Ill 1960) 122(4):487–494

    Google Scholar 

  4. Kanski JJ, Kubicka-Trzáska A (2007) Clinical ophthalmology: a self-assessment companion. Elsevier Churchill Livingstone

    Google Scholar 

  5. Vinogradov SV, Kohli E, Zeman AD (2005) Cross-linked polymeric nanogel formulations of 5 ‘-triphosphates of nucleoside analogues: role of the cellular membrane in drug release. Mol Pharm 2(6):449–461

    Article  Google Scholar 

  6. Klein BEK, Klein R, Linton KLP, Magli YL, Neider MW (1990) Assessment of cataracts from photographs in the Beaver Dam eye study. Ophthalmology 97(11):1428–1433

    Article  Google Scholar 

  7. Soares JVB, Leandro JJG, Cesar RM, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222

    Article  Google Scholar 

  8. Kotyk T, Chakraborty S, Dey N, Gaber T, Hassanien AE, Snasel V (2016) Semi-automated system for cup to disc measurement for diagnosing glaucoma using classification paradigm. In: Proceedings of the second international Afro-European conference for industrial advancement AECIA 2015. Springer, pp 653–663

    Google Scholar 

  9. Lupascu CA, Tegolo D, Trucco E (2010) FABC: retinal vessel segmentation using AdaBoost. IEEE Trans Inf Technol Biomed 14(5):1267–1274

    Article  Google Scholar 

  10. Memari N, Ramli AR, Bin Saripan MI, Mashohor S, Moghbel M (2017) Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier. PLoS ONE 12(12):e0188939

    Article  Google Scholar 

  11. Fraz MM, Remagnino P, Hoppe A, Velastin S, Uyyanonvara B, Barman SA (2011) A supervised method for retinal blood vessel segmentation using line strength, multiscale Gabor and morphological features. In: 2011 IEEE international conference on signal and image processing applications (ICSIPA). IEEE, pp 410–415

    Google Scholar 

  12. Moraru L, Obreja CD, Dey N, Ashour AS (2018) Dempster-shafer fusion for effective retinal vessels’ diameter measurement. In: Soft computing based medical image analysis. Elsevier, pp 149–160

    Google Scholar 

  13. Lennon R (2002) Remote sensing digital image analysis: an introduction. United States, Esa/Esrin

    Google Scholar 

  14. Maji D, Sekh AA (2020) Automatic grading of retinal blood vessel in deep retinal image diagnosis. J Med Syst 44(10):1–14

    Article  Google Scholar 

  15. James J, Sharifahmadian E, Shih L (2018) Automatic severity level classification of diabetic retinopathy. Int J Comput Appl 180:30–35

    Google Scholar 

  16. Yang Y, Li T, Li W, Wu H, Fan W, Zhang W (2017) Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 533–540

    Google Scholar 

  17. Paing MP, Choomchuay S, Yodprom MDR (2016) Detection of lesions and classification of diabetic retinopathy using fundus images. In: 2016 9th Biomedical engineering international conference (BMEiCON). IEEE, pp 1–5

    Google Scholar 

  18. Seoud L, Chelbi J, Cheriet F (2015) Automatic grading of diabetic retinopathy on a public database. In: Ophthalmic medical image analysis international workshop. University of Iowa

    Google Scholar 

  19. Prasad DK, Vibha L, Venugopal KR (2015) Early detection of diabetic retinopathy from digital retinal fundus images. In: 2015 IEEE recent advances in intelligent computational systems (RAICS). IEEE, pp 240–245

    Google Scholar 

  20. Roychowdhury S, Koozekanani DD, Parhi KK (2013) DREAM: diabetic retinopathy analysis using machine learning. IEEE J Biomed Heal Inform 18(5):1717–1728

    Article  Google Scholar 

  21. Gayathri S, Krishna AK, Gopi VP, Palanisamy P (2020) Automated binary and multiclass classification of diabetic retinopathy using haralick and multiresolution features. IEEE Access 8:57497–57504

    Article  Google Scholar 

  22. Akram MU, Khalid S, Tariq A, Khan SA, Azam F (2014) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45:161–171

    Article  Google Scholar 

  23. Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y (2016) Convolutional neural networks for diabetic retinopathy. Proc Comput Sci 90:200–205

    Article  Google Scholar 

  24. Mookiah MRK, Acharya UR, Martis RJ, Chua CK, Lim CM, Ng EYK, Laude A (2013) Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach. Knowledge-based Syst 39:9–22

    Article  Google Scholar 

  25. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 3431–3440

    Google Scholar 

  26. Lian S, Luo Z, Zhong Z, Lin X, Su S, Li S (2018) Attention guided U-net for accurate iris segmentation. J Vis Commun Image Represent 56:296–304

    Article  Google Scholar 

  27. Bansal N, Dutta M (2013) Retina vessels detection algorithm for biomedical symptoms diagnosis. Int J Comput Appl 71(20)

    Google Scholar 

  28. Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  Google Scholar 

  29. Hoover AD, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Article  Google Scholar 

  30. Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548

    Article  Google Scholar 

  31. Budai A, Bock R, Maier A, Hornegger J, Michelson G (2013) Robust vessel segmentation in fundus images. Int J Biomed Imaging

    Google Scholar 

  32. Prentašić P, Lončarić S, Vatavuk Z, Benčić G, Subašić M, Petković T, Dujmović L, Malenica-Ravlić M, Budimlija N, Tadić R (2013) Diabetic retinopathy image database (DRiDB): a new database for diabetic retinopathy screening programs research. In: 2013 8th international symposium on image and signal processing and analysis (ISPA). IEEE, pp 711–716

    Google Scholar 

  33. Estrada R, Allingham MJ, Mettu PS, Cousins SW, Tomasi C, Farsiu S (2015) Retinal artery-vein classification via topology estimation. IEEE Trans Med Imaging 34(12):2518–2534

    Article  Google Scholar 

  34. Holm S, Russell G, Nourrit V, McLoughlin N (2017) DR HAGIS—a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. J Med Imaging 4(1):14503

    Article  Google Scholar 

  35. Roychowdhury S, Koozekanani DD, Parhi KK (2014) Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J Biomed Heal Inform 19(3):1118–1128

    Google Scholar 

  36. Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2015) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118

    Article  Google Scholar 

  37. Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent residual convolutional neural network based on U-net (R2U-net) for medical image segmentation

    Google Scholar 

  38. Wang B, Qiu S, He H (2019) Dual encoding U-net for retinal vessel segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 84–92

    Google Scholar 

  39. Maiti S, Maji D, Dhara AK, Sarkar G (2022) Automatic detection and segmentation of optic disc using a modified convolution network. Biomed Signal Process Control 76:103633

    Google Scholar 

  40. Maji D, Maiti S, Dhara AK, Sarkar G (2022) Biomedical signal processing and control 74 (2022); Automatic grading of retinal blood vessel tortuosity using Modified CNN in deep retinal image diagnosis. Biomed Signal Process Control 74:103514

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Maji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maji, D., Maiti, S., Dhara, A.K., Sarkar, G. (2023). Automated Retinal Blood Vessel Segmentation Using Modified U-Net Architecture. In: Sarkar, D.K., Sadhu, P.K., Bhunia, S., Samanta, J., Paul, S. (eds) Proceedings of the 4th International Conference on Communication, Devices and Computing. ICCDC 2023. Lecture Notes in Electrical Engineering, vol 1046. Springer, Singapore. https://doi.org/10.1007/978-981-99-2710-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2710-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2709-8

  • Online ISBN: 978-981-99-2710-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics