Skip to main content

Clay Composites: Physicochemical Characterization

  • Chapter
  • First Online:
Clay Composites

Abstract

Clay compounds have been used by human societies since time immemorial, because they are abundant in nature, smaller than 4 microns, adherent, plastic, malleable, have ion exchange capacity and affinity with water. Due to their physical and chemical properties, they are used in agriculture, livestock, industry, commerce, tourism and the environment for the development of services and products such as bricks, crockery, paints, pharmaceuticals, agricultural inputs and natural filters. The clay composition of an environment depends on the rock that gave rise to it, weathering and pedogenesis, with the following groups standing out: kaolinite-serpentine, talc-pyrophyllite, mica, vermiculite, smectite, chlorite and sepiolite-palygorskite. Each of these groups has specific physicochemical properties, which will direct them to certain uses. Proper use requires prior characterization, so in this chapter we will discuss the main types of clay compounds, their structure, formation, occurrence, mineralogical and physicochemical characteristics and their environmental importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alves, L.J., et al.: Uranium transfer in grasses grown on mining waste and natural soil. J. Environ. Radioact. 251–252, 106973 (2022)

    Article  Google Scholar 

  2. Alves, L.J., et al.: Microbial approach for alleviation of potentially toxic elements in agricultural soils. In: Prasad, M.N.V., Pietrzykowski, M. (Eds.) Climate Change and Soil Interactions: Managing Soil System for Environmental Sustainability, 1st edn, vol. 1, pp. 271–303. Elsevier, Amsterdã (2020)

    Google Scholar 

  3. Alves, L.J., et al.: Uranium mine waste phytostabilization with native plants—a case study from Brazil. In: Prasad, M.N.V., de Campos Favas, P.J., Maiti, S.K. (Eds.) Bio-Geotechnologies for Mine Site Rehabilitation, 1st edn, vol. 1, pp. 299–322. Elsevier, Amsterdã (2018)

    Google Scholar 

  4. Alves, L.A.: Micorriza arbuscular como ferramenta biotecnológica para controle da transferência de urânio. Tese de doutorado. UESC (2018), 193p.

    Google Scholar 

  5. Bailey, S.W. (Ed.): Hydrous phyllosilicates (exclusive of micas). Mineralogical Society of America, Washington (1988) (Revi. Miner., 19)

    Google Scholar 

  6. Bantignies, J., Moulin, C.C., Dexpert, H.: Asphaltene adsorption on kaolinite characterized by infrared and Xray absorption spectroscopies. J. Petrol. Sci. Eng. 20, 233–237 (1998)

    Google Scholar 

  7. Barrios-Estrada, C., Rostro-Alanis, M.J., Muñoz-Gutiérrez, B.D., et al.: Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation—A review. Sci. Total Environ. 612(15), 1516–1531 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.013

    Article  CAS  Google Scholar 

  8. Bayer, C., Martin-Neto, L., Mielniczuk, J., Pillon, C.N., Sangoi, L.: Changes in soil organic matter fractions under subtropical no-till cropping systems. Soil Sci. Soc. Am. J. 65(5), 1473–1478 (2001). https://doi.org/10.2136/sssaj2001.6551473x

    Article  CAS  Google Scholar 

  9. Besoain, E.: Mineralogia de arcillas de suelos. IICA, San José, 1216 p. (1985) (IICA/Série libros y materiales educativos, n. 60)

    Google Scholar 

  10. Bish, D.L.: Refinamento Rietveld da estrutura de caulinita a 1,5 K Clays Clay Miner, 41, pp. 738–744 (1993). https://doi.org/10.1346/CCMN.1993.0410613

  11. Borchardt, G.A.: Smectites, pp. 675–727. In: Dixon, J.B., Weed, S.B. (Eds.) Minerals in Soil Environments, 2nd edn. SSSA Book Ser. 1. SSSA, Madison, WI (1989)

    Google Scholar 

  12. Braggs, B., Fornasiero, D., Ralston, J., et al.: The effect of surface modification by an organosilane on the electrochemical properties of kaolinite. Clays Clay Miner. 42, 123–136 (1994). https://doi.org/10.1346/CCMN.1994.0420203

    Article  CAS  Google Scholar 

  13. Brindley, G.W., Brown, G.: Crystal Structures of Clay Minerals and Their X-Ray Identification, p. 495p. Mineralogical Society, London (1984)

    Google Scholar 

  14. Brindley, G.W., et al.: Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner. 34(3), 239–249 (1986)

    Article  CAS  Google Scholar 

  15. Calderano, S.B. et al.: Análise mineralógica das frações finas do solo por difratometria de raios-X: revisão e atualização da metodologia e critérios usados na Embrapa Solos. Embrapa Solos, Rio de Janeiro (2009). (Embrapa Solos, Comunicado Técnico, 53)

    Google Scholar 

  16. Carbonell, V.V.R., et al.: Clay mineral assemblages as indicators of paleoenvironmental and diagenetic dynamics in the Neogene Fiambal´a Basin, NW Argentina. J. S. Am. Earth Sci. 118(2022), 103949 (2022). https://doi.org/10.1016/j.jsames.2022.103949

    Article  CAS  Google Scholar 

  17. Corrêa, M.M., et al.: Caracterização física, química, mineralógica e micromorfológica de horizontes coesos e fragipãs de solos vermelhos e amarelos do ambiente tabuleiros costeiros. R. Bras. Ci. Solo 32, 297–313 (2008). https://doi.org/10.1590/S0100-06832008000100028

    Article  Google Scholar 

  18. Coulombe, C.E., Wilding, L.P., Dixon, J.B.: Overview of vertissols: characteristics and impacts of society. Adv. Agron. 57, 289–375 (1996). https://doi.org/10.1016/S0065-2113(08)60927-X

    Article  CAS  Google Scholar 

  19. Dudášová, D., et al.: Estudo da adsorção de asfaltenos em diferentes minerais e argilas. Parte 1. Adsorção experimental com detecção de depleção de UV Colloids Surf, A 317, 1– (2008). https://doi.org/10.1016/j.colsurfa.2007.09.023

  20. Das, N.C., Bandyopadhay, M.: Removal of copper (II) using vermiculite. Water Environ. Res. 64, 852–857 (1992)

    Article  Google Scholar 

  21. Douglas, L.A.: Vermiculites. In: Dixon, J.B., Weed, S.B. (eds.) Minerals in Soil Environments, pp. 635–674. Soil Science Society of America, Madison (1989)

    Google Scholar 

  22. Formentini, T.A., Basile-Doelsch, I., Legros, S., et al.: Instability of OW-borne Cu(I) sulfide and role of clay and iron oxide minerals. Sci. Total Environ. 848(20), 157779 (2022). https://doi.org/10.1016/j.scitotenv.2022.157779

  23. Grim, R.: Clay mineralogy. McGrall-Hill Book Company (1953), 384p.

    Google Scholar 

  24. Gruner, J.W.: The Crystal Structure of Kaolinite. Zeitschrift für Kristallographie. Crystall. Mater. 83(1) (1932). https://doi.org/10.1524/zkri.1932.83.1.75

  25. Guggenheim, S., Martin, R.T.: Definition of clay and clay minerals: joint report of the AIPEA and CMS nomenclature committees. Clay Miner. 30, 257–259 (1995)

    Article  CAS  Google Scholar 

  26. Guo, J.J., et al.: Source, migration and toxicology of microplastics in soil. Environ. Int. 137, 105263 (2020). https://doi.org/10.1016/j.envint.2019.105263

    Article  CAS  Google Scholar 

  27. Jackson, T.A.: The biogeochemical and ecological significance of interactions between colloidal minerals and trace elements. In: Parker, A., Rae, J.E. (Eds.) Environmental Interactions of Clays. Springer, Berlin, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03651-8_5

  28. Johnston, C.T., Tombácz, E.: Surface chemistry of soils minerals. In: Dixon, J.B., Schulze, D.G. (Eds.) Soil Mineralogy with Environmental Applications, vol. 7, pp. 37–67. Soil Science Society of America, 677 South Segoe Road, Madison, WI 53711, USA. SSSA Book Series (2002)

    Google Scholar 

  29. Johnson, E.R., Otero-De-La-Roza, A.: Adsorption of organic molecules on kaolinite from the exchange-hole dipole moment dispersion model. J. Chem. Theory Comput. 8(2012), 5124–5131 (2012). https://doi.org/10.1021/ct3006375

    Article  CAS  Google Scholar 

  30. Kampf, N., Curi, N.: Argilominerais em solos brasileiros. In: Tópicos em Ciência do Solo. pp. 1–54. SBCS (2003)

    Google Scholar 

  31. Kazem, M.S., Abbas, A.M.: Study of inorganic doping of kaolin clay, a kinetic study of adsorption of methyl green dye from its aqueous solutions. Eurasian Chem. Commun. 4, 1218–1227 (2022). https://doi.org/10.22034/ecc.2022.342243.1467

  32. Kohut, C.K., Warren, C.J.: Chlorites. Soil Science Society of America, 677 South Segoe Road, Madison, WI 53711, USA. Soil Mineralogy with Environmental Applications, vol. 7, pp. 531–553. SSSA Book Series (2002)

    Google Scholar 

  33. Laird, D.A., Sawhney, B.L.: Reactions of pesticides with soil minerals. In: Dixon, J.B., Schulze, D.G. (Eds.) Soil Mineralogy with Environmental Applications, pp. 765–793. Madison, Soil Science Society of America (2002). https://doi.org/10.2136/sssabookser7.c26

  34. Lee, J.F., et al.: Shape-selective adsorption of aromatic molecules from water by tetramethylammonium–smectite. J. Chem. Soc. Faraday Trans. 1F 85, 2953–2962 (1989).

    Google Scholar 

  35. Long, J., et al.: Adhesion of single polyelectrolyte molecules on silica, mica, and bitumen surfaces. Langmuir 22, 1652–1659 (2006). https://doi.org/10.1021/la052757f

    Article  CAS  Google Scholar 

  36. Li, J., Zhang, B., Liu, M., Wang, Y.: Numerical simulation of the large-scale malignant environmental pollution incident. Process Saf. Environ. Protect. 87, 232–244 (2009)

    Article  CAS  Google Scholar 

  37. Li, C., et al.: Efficient catalytic degradation of bisphenol A coordinated with peroxymonosulfate via anchoring monodispersed zero-valent iron on natural kaolinite. Chem. Eng. J. 448(2022), 137746 (2022). https://doi.org/10.1016/j.cej.2022.137746

    Article  CAS  Google Scholar 

  38. Malla, P.B.: Vermiculites. Soil Science Society of America, 677 South Segoe Road, Madison, WI 53711, USA. Soil Mineralogy with Environmental Applications, vol. 7, pp. 501–529. SSSA Book Series

    Google Scholar 

  39. McBride, M.B.: Environmental Chemistry of Soil, p. 406p. Oxford University Press, New York (1994)

    Google Scholar 

  40. Melo, V.F., Wypych, F.: Caulinite e haloisita. In: Química e Mineralogia do Solo, Parte I (Eds. Vander de Freitas Melo & Luís Reynaldo Ferracciú Alleoni). 695p. pp. 427–504 (2009)

    Google Scholar 

  41. Natarajan, A., et al.: Understanding mechanisms of asphaltene adsorption from organic solvent on mica. Langmuir 30, 9370–9377 (2014). https://doi.org/10.1021/la500864h

    Article  CAS  Google Scholar 

  42. Nunes, F.C., et al.: Phytoremediation strategies for rehabilitation of soils affected by red mud: the Mariana Tailing Dam Collapse (Minas Gerais Brazil. Eur. Soil Sci. 1, 1–13 (2022)

    Google Scholar 

  43. Nunes, F.C., et al.: Ecological engineering and ecosystem services—theory and practice. In: Prasad, M.N.V. (Ed.) Handbook of Ecological and Ecosytem EngIneering, 1st edn, vol. 1, pp. 1–24. John Wiley & Sons (2021)

    Google Scholar 

  44. Nunes, F.C., et al.: Soil as a complex ecological system for meeting food and nutritional security. In: Prasad, M.N.V., Pietrzykowski, M. (Eds.) Climate Change and Soil Interaction, 1st edn, vol. 1, pp. 22–269. Elsevier, Amsterdã (2020)

    Google Scholar 

  45. Nunes, F.C., et al.: Solos vermelhos e amarelos coesos de tabuleiros costeiros: gênese, evolução e influência da neotectônica. Caminhos da Geografia (UFU. Online), vol. 20, pp. 294–314 (2020). https://doi.org/10.14393/RCG207241145

  46. Pauling, L.: The structure of the chlorites. Proc. Natl. Acad. Sci. USA 16(9), 578–582 (1930). https://doi.org/10.1073/pnas.16.9.578.PMID:16587609;PMCID:PMC526695

    Article  CAS  Google Scholar 

  47. Prasad, M.N., et al.: Global remediation industry and trends. In: Prasad, M.N.V. (Ed.) Handbook of Assisted and Amendment-Enhanced Sustainable Remediation Technology, 1st edn, vol. 1, pp. 3–28. John Wiley & Sons (2021)

    Google Scholar 

  48. Reid-Soukup, D.A., Ulery, A.L.: Smectites. Soil science society of America, 677 South Segoe Road, Madison, WI 53711, USA. Soil Mineralogy with Environmental Applications, vol. 7, pp. 467–499. SSSA Book Series (2002)

    Google Scholar 

  49. Sato, T., Watanabe, T., Otsuka, R.: Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays Clay Miner. 40, 103–113 (1992). https://doi.org/10.1346/CCMN.1992.0400111

    Article  CAS  Google Scholar 

  50. Schulze, D.G.: An introduction to soil mineralogy. In: Dixon, J.B., Schulze, D.G. (Eds.) Soil Mineralogy with Environmental Applications, pp. 1–35. Soil Science Society of America, Madison (2002). https://doi.org/10.2136/sssabookser7.c1

  51. Schulze, D.G.: An introduction to soil mineralogy. In: Dixon, J.B., Weed, S.B. (Eds.) Minerals in Soil Environments, pp. 1–34. Soil Science Society of America, Madison (1989). https://doi.org/10.2136/sssabookser1.2ed.c1

  52. Senthilvelan, T., Kanagaraj, J., Panda, R.C., Mandal, A.B.: Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean Technol. Environ. Policy 16, 113–126 (2013)

    Article  Google Scholar 

  53. Shen, S., Stucki, J.W., Boast, C.W.: Effects of structural iron reduction on the hydraulic conductivity of na-smectite. Clays Clay Miner. 40, 381–386 (1992). https://doi.org/10.1346/CCMN.1992.0400402

    Article  CAS  Google Scholar 

  54. Shi, C., et al.: Probing the interaction mechanism between oil droplets with asphaltenes and solid surfaces using AFM. J. Colloid Interface Sci. 558, 173–181 (2019). https://doi.org/10.1016/j.jcis.2019.09.092

    Article  CAS  Google Scholar 

  55. Singer, A.: Palygorskite and Sepiolite. Soil Science Society of America, 677 South Segoe Road, Madison, WI 53711, USA. Soil Mineralogy with Environmental Applications. SSSA Book Series, 7, 555–583 (2002)

    CAS  Google Scholar 

  56. Sun, W. et al.: Molecular dynamics simulation of model asphaltenes between surfaces of varying polarity. Fuel 331, 125842 (2023). https://doi.org/10.1016/j.fuel.2022.125842

  57. Sun, W., et al.: Enhanced adsorption of anionic polymer on montmorillonite by divalent cations and the effect of salinity. J. Phys. Chem. A 125, 1025–1035 (2021). https://doi.org/10.1021/acs.jpca.0c08797

  58. Thompson, M.L., Ukrainczyk, L.: Micas. Soil science society of America, 677 South Segoe Road, Madison, WI 53711, USA. Soil Mineralogy with Environmental Applications. Vol. 7, pp. 431–466. SSSA Book Series

    Google Scholar 

  59. Van Bladel, R., Halen, H., Cloos, P.: Calcium–zinc and calcium–cadmium exchange in suspensions of various types of clays. Clay Miner. 28, 33–38 (1993)

    Article  Google Scholar 

  60. Wang, G., et al.: Utilization of methylene blue-adsorbed halloysite after carbonization to activate peroxymonosulfate degrading phenol: Performance and mechanism. Chemosphere 305(2022), 135326 (2022). https://doi.org/10.1016/j.chemosphere.2022.135326

    Article  CAS  Google Scholar 

  61. Wentworth, C.K.: A scale of grade and class terms for clastic sediments. J. Geol. 30(5), 377–392 (1922). https://doi.org/10.1086/622910

  62. White, G.N., Dixon, J.D.: Kaolin-Serpentine Minerals. Soil Science Society of America, 677 South Segoe Road, Madison, WI 53711, USA. Soil Mineralogy with Environmental Applications. SSSA Book Series, 7, 389–414 (2002)

    CAS  Google Scholar 

  63. Ye, X., et al.: Effects of clay minerals on the transport of polystyrene nanoplastic in groundwater. Water Res. 223 118978 (2022). https://doi.org/10.1016/j.watres.2022.118978

  64. Zanardo, A., Marques Júnior, J.: Conceitos básicos em mineralogia. In: Química e Mineralogia do Solo, Parte I (Eds. Vander de Freitas Melo & Luís Reynaldo Ferracciú Alleoni). 695p. pp. 73–150 (2009)

    Google Scholar 

  65. Zelazny, L.W., et al.: Pyrophyllite-Talc Minerals. Soil Science Society of America, 677 South Segoe Road, Madison, WI 53711, USA. Soil Mineralogy with Environmental Applications. SSSA Book Series, 7, 415–430 (2002)

    CAS  Google Scholar 

  66. Zhong, W., Wang, D., Wang, Z.: Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin, China. Environ. Pollut. 235, 121–128 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In Memoriam, to professors Ilson Guimarães Carvalho, Lucedino Paixão Ribeiro and Tersandro Paz do Rego Monteiro, Brazilian geoscientists who taught so much about clay minerals and their environmental importance. The authors thank Leandro Fonseca Carvalho and biologist Mr. Jackson M. Ministro for his help with figures. The authors also thank Prof. MSc. Gileno Santos Moreira for kindly providing photomicrographs of the biotite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Carvalho Nunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nunes, F.C., de Carvalho, C.C.N., de Jesus Alves, L., Prasad, M.N.V. (2023). Clay Composites: Physicochemical Characterization. In: Vithanage, M., Lazzara, G., Rajapaksha, A.U. (eds) Clay Composites. Advances in Material Research and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2544-5_2

Download citation

Publish with us

Policies and ethics