Skip to main content

Stem Cells Therapy for Cartilage Regeneration in Clinic: Challenges and Opportunities

  • Chapter
  • First Online:
Cartilage: From Biology to Biofabrication

Abstract

For both academics and clinicians, the repair and regeneration of articular cartilage have offered a challenging array of issues. Injuries to articular cartilage have a poor chance of healing since it is an avascular tissue. Small defects may eventually heal on their own without treatment, but the repair tissue is inferior to the body’s own hyaline cartilage because it is made of fibrocartilage. Due to its regenerative capabilities, the idea of stem cell therapy has sparked intense research into its potential application for treating cartilage lesions, including OA. The purpose of this chapter is to present a perspective on stem cell-based therapy for cartilage repair and to highlight recent developments in advanced cell therapy, in particular, the use of embryonic stem cells, mesenchymal stem cells, and induce pluripotent stem cells for treating diseases associated with cartilage defects, particularly OA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya C et al (2012) Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J Cell Physiol 227(1):88–97

    Article  CAS  PubMed  Google Scholar 

  • Adkar SS et al (2019) Step-wise chondrogenesis of human-induced pluripotent stem cells and purification via a reporter allele generated by CRISPR-Cas9 genome editing. Stem Cells 37(1):65–76

    Article  CAS  PubMed  Google Scholar 

  • Akgun I et al (2015) Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg 135(2):251–263

    Article  PubMed  Google Scholar 

  • Armiento AR, Alini M, Stoddart MJ (2019) Articular fibrocartilage-Why does hyaline cartilage fail to repair? Adv Drug Deliv Rev 146:289–305

    Article  CAS  PubMed  Google Scholar 

  • Bai HY et al (2010) Three step derivation of cartilage like tissue from human embryonic stem cells by 2D-3D sequential culture in vitro and further implantation in vivo on alginate/PLGA scaffolds. J Biomed Mater Res A 94(2):539–546

    PubMed  Google Scholar 

  • Bell DM et al (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16(2):174–178

    Article  CAS  PubMed  Google Scholar 

  • Berebichez-Fridman R, Montero-Olvera PR (2018) Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J 18(3):e264

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianchi VJ et al (2017) Formation of hyaline cartilage tissue by passaged human osteoarthritic chondrocytes. Tissue Eng A 23(3–4):156–165

    Article  CAS  Google Scholar 

  • Bigdeli N et al (2009) Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells 27(8):1812–1821

    Article  PubMed  Google Scholar 

  • Boehme KA, Rolauffs B (2018) Onset and progression of human osteoarthritis—can growth factors, inflammatory cytokines, or differential miRNA expression concomitantly induce proliferation, ECM degradation, and inflammation in articular cartilage? Int J Mol Sci 19(8):2282

    Article  PubMed  PubMed Central  Google Scholar 

  • Bridgewater LC, Lefebvre V, de Crombrugghe B (1998) Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem 273(24):14998–15006

    Article  CAS  PubMed  Google Scholar 

  • Bruschi M, Agarwal P, Bhutani N (2022) Chapter 7: Induced pluripotent stem cells–derived chondrocyte progenitors. In: Birbrair A (ed) iPSC-derived progenitors. Academic Press, pp 159–176

    Chapter  Google Scholar 

  • Buhrmann C et al (2010) Curcumin mediated suppression of nuclear factor-κB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment. Arthritis Res Ther 12(4):1–15

    Article  Google Scholar 

  • Caldwell KL, Wang J (2015) Cell-based articular cartilage repair: the link between development and regeneration. Osteoarthr Cartil 23(3):351–362

    Article  CAS  Google Scholar 

  • Cancedda R, Descalzi Cancedda F, Castagnola P (1995) Chondrocyte differentiation. Int Rev Cytol 159:265–358

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (2015) Adult mesenchymal stem cells: when, where, and how. Stem Cells Int 2015:628767

    Article  PubMed  PubMed Central  Google Scholar 

  • Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6(6):1445–1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    Article  CAS  PubMed  Google Scholar 

  • Castro-Viñuelas R et al (2018) Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Eur Cells Mater 36:96–109. https://doi.org/10.22203/ecm.v036a08

    Article  CAS  Google Scholar 

  • Chahal J et al (2019) Bone marrow mesenchymal stromal cell treatment in patients with osteoarthritis results in overall improvement in pain and symptoms and reduces synovial inflammation. Stem Cells Transl Med 8(8):746–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran B, Goel A (2012) A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother Res 26(11):1719–1725

    Article  CAS  PubMed  Google Scholar 

  • Chen K et al (2010) Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol 135(3):448–458

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2013a) Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Injury 44(4):540–549

    Article  PubMed  Google Scholar 

  • Chen CW et al (2013b) Human pericytes for ischemic heart repair. Stem Cells 31(2):305–316

    Article  CAS  PubMed  Google Scholar 

  • Chen WC, Péault B, Huard J (2015) Regenerative translation of human blood-vessel-derived MSC precursors. Stem Cells Int 2015:375187

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C-F et al (2021) Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTE®: a phase I/II, randomized, active-control, single-blind, multiple-center clinical trial. Stem Cell Res Ther 12(1):1–12

    Article  Google Scholar 

  • Cheng T et al (2012) Fibroblast growth factor 2 enhances the kinetics of mesenchymal stem cell chondrogenesis. Biochem Biophys Res Commun 426(4):544–550

    Article  CAS  PubMed  Google Scholar 

  • Cheng A et al (2014a) Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Transl Med 3(11):1287–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng A, Hardingham TE, Kimber SJ (2014b) Generating cartilage repair from pluripotent stem cells. Tissue Eng Part B Rev 20(4):257–266

    Article  PubMed  Google Scholar 

  • Cheng A et al (2017) Recombinant extracellular matrix protein fragments support human embryonic stem cell chondrogenesis. Tissue Eng A 24(11–12):968–978

    Google Scholar 

  • Choo AB et al (2008) Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26(6):1454–1463

    Article  CAS  PubMed  Google Scholar 

  • Cipollaro L et al (2019) Biomechanical issues of tissue-engineered constructs for articular cartilage regeneration: in vitro and in vivo approaches. Br Med Bull 132:53–80

    Article  CAS  PubMed  Google Scholar 

  • Cleary MA et al (2015) FGF, TGFβ and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. J Tissue Eng Regen Med 9(4):332–342

    Article  CAS  PubMed  Google Scholar 

  • Collins NJ, Hart HF, Mills KA (2019) Osteoarthritis year in review 2018: rehabilitation and outcomes. Osteoarthr Cartil 27(3):378–391

    Article  CAS  Google Scholar 

  • Cosenza S et al (2017) Pathogenic or therapeutic extracellular vesicles in rheumatic diseases: role of mesenchymal stem cell-derived vesicles. Int J Mol Sci 18(4):889

    Article  PubMed  PubMed Central  Google Scholar 

  • Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  CAS  PubMed  Google Scholar 

  • Csaki C et al (2008) Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro. Biochem Pharmacol 75(3):677–687

    Article  CAS  PubMed  Google Scholar 

  • Davatchi F et al (2016) Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int J Rheum Dis 19(3):219–225

    Article  PubMed  Google Scholar 

  • Dayan V et al (2016) Human mesenchymal stromal cells improve cardiac perfusion in an ovine immunocompetent animal model. J Investig Surg 29(4):218–225

    Article  Google Scholar 

  • de Almeida PE et al (2013) Immunogenicity of pluripotent stem cells and their derivatives. Circ Res 112(3):549–561

    Article  PubMed  PubMed Central  Google Scholar 

  • De Bari C, Roelofs AJ (2018) Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol 40:74–80

    Article  PubMed  Google Scholar 

  • De Girolamo L et al (2016) Regenerative approaches for the treatment of early OA. Knee Surg Sports Traumatol Arthrosc 24(6):1826–1835

    Article  PubMed  Google Scholar 

  • de Kroon LMG et al (2016) Activin receptor-like kinase receptors ALK5 and ALK1 are both required for TGFβ-induced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One 10(12):e0146124

    Article  Google Scholar 

  • De Luca P et al (2019) Human diseased articular cartilage contains a mesenchymal stem cell-like population of chondroprogenitors with strong immunomodulatory responses. J Clin Med 8(4):423

    Article  PubMed  PubMed Central  Google Scholar 

  • de Souza LEB et al (2016) Mesenchymal stem cells and pericytes: to what extent are they related? Stem Cells Dev 25(24):1843–1852

    Article  PubMed  Google Scholar 

  • de Windt TS et al (2017) Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells 35(1):256–264

    Article  PubMed  Google Scholar 

  • Deng Z et al (2020) Narrative review of the choices of stem cell sources and hydrogels for cartilage tissue engineering. Ann Transl Med 8(23):1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dicks A et al (2020) Prospective isolation of chondroprogenitors from human iPSCs based on cell surface markers identified using a CRISPR-Cas9-generated reporter. Stem Cell Res Ther 11(1):66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diekman BO et al (2012) Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci U S A 109(47):19172–19177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi D et al (2020) Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat Commun 11(1):3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorman LJ, Tucci M, Benghuzzi H (2012) In vitro effects of bmp-2, bmp-7, and bmp-13 on proliferation and differentation of mouse mesenchymal stem cells. Biomed Sci Instrum 48:81–87

    PubMed  Google Scholar 

  • Driessen BJH, Logie C, Vonk LA (2017) Cellular reprogramming for clinical cartilage repair. Cell Biol Toxicol 33(4):329–349

    Article  PubMed  PubMed Central  Google Scholar 

  • Dulic O et al (2020) Do knee injection portals affect clinical results of bone marrow aspirate concentrate injection in the treatment of osteoarthritis? A prospective randomized controlled study. Regen Med 15(8):1987–2000

    Article  CAS  PubMed  Google Scholar 

  • Emadedin M et al (2015) Long-term follow-up of intra-articular injection of autologous mesenchymal stem cells in patients with knee, ankle, or hip osteoarthritis. Arch Iran Med 18(6):336–344

    PubMed  Google Scholar 

  • Emadedin M et al (2018) Intra-articular implantation of autologous bone marrow–derived mesenchymal stromal cells to treat knee osteoarthritis: a randomized, triple-blind, placebo-controlled phase 1/2 clinical trial. Cytotherapy 20(10):1238–1246

    Article  PubMed  Google Scholar 

  • Facchini A et al (2006) Human chondrocytes and mesenchymal stem cells grown onto engineered scaffold. Biorheology 43(3, 4):471–480

    PubMed  Google Scholar 

  • Fahy N, Alini M, Stoddart MJ (2018) Mechanical stimulation of mesenchymal stem cells: implications for cartilage tissue engineering. J Orthop Res 36(1):52–63

    PubMed  Google Scholar 

  • Fayazi N et al (2021) Stem cell-derived exosomes: a new strategy of neurodegenerative disease treatment. Mol Neurobiol 58(7):3494–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira MJ et al (2021) Pluripotent stem cells for skeletal tissue engineering. Crit Rev Biotechnol 42:774–793

    Article  PubMed  Google Scholar 

  • Filardo G et al (2013) Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc 21(8):1717–1729

    Article  PubMed  Google Scholar 

  • Foltz L et al (2021) Craniofacial cartilage organoids from human embryonic stem cells via a neural crest cell intermediate. bioRxiv

    Book  Google Scholar 

  • Freitag J et al (2016) Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy—a review. BMC Musculoskelet Disord 17(1):230

    Article  PubMed  PubMed Central  Google Scholar 

  • Frese L, Dijkman PE, Hoerstrup SP (2016) Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 43(4):268–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu X, Xu Y (2012) Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Med 4(6):55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Bernal D et al (2021) The current status of mesenchymal stromal cells: controversies, unresolved issues and some promising solutions to improve their therapeutic efficacy. Front Cell Dev Biol 9:609

    Article  Google Scholar 

  • Gardner OF et al (2017) Asymmetrical seeding of MSCs into fibrin–poly (ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis. J Tissue Eng Regen Med 11(10):2912–2921

    Article  CAS  PubMed  Google Scholar 

  • Garreta E et al (2018) Roadblocks in the path of iPSC to the clinic. Curr Transpl Rep 5(1):14–18

    Article  PubMed  Google Scholar 

  • Gertow K et al (2013) WNT3A promotes hematopoietic or mesenchymal differentiation from hESCs depending on the time of exposure. Stem Cell Rep 1(1):53–65

    Article  CAS  Google Scholar 

  • Goetzke R et al (2019) Differentiation of induced pluripotent stem cells towards mesenchymal stromal cells is hampered by culture in 3D hydrogels. Sci Rep 9(1):15578

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldring MB (2006) Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheumatol 20(5):1003–1025

    Article  CAS  PubMed  Google Scholar 

  • Gomez M et al (2020) Mesenchymal stromal cell transplantation induces regeneration of large and full-thickness cartilage defect of the temporomandibular joint. Cartilage 13:1814S–1821S

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong G et al (2010) Direct and progressive differentiation of human embryonic stem cells into the chondrogenic lineage. J Cell Physiol 224(3):664–671

    Article  CAS  PubMed  Google Scholar 

  • Goyal D et al (2013) Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy 29(9):1579–1588

    Article  PubMed  Google Scholar 

  • Grad S et al (2011) Physical stimulation of chondrogenic cells in vitro: a review. Clin Orthop Relat Res 469(10):2764–2772

    Article  PubMed  PubMed Central  Google Scholar 

  • Grande DA et al (2003) Stem cells as platforms for delivery of genes to enhance cartilage repair. JBJS 85(suppl_2):111–116

    Article  Google Scholar 

  • Griffith LA et al (2021) A scaffold-free approach to cartilage tissue generation using human embryonic stem cells. Sci Rep 11(1):1–11

    Article  Google Scholar 

  • Gudas R et al (2013) Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: a prospective study with a 3-year follow-up. Arthroscopy 29(1):89–97

    Article  PubMed  Google Scholar 

  • Gupta PK et al (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 3(4):1–9

    Article  CAS  Google Scholar 

  • Hargus G et al (2008) Loss of Sox9 function results in defective chondrocyte differentiation of mouse embryonic stem cells in vitro. Int J Dev Biol 52(4):323–332

    Article  CAS  PubMed  Google Scholar 

  • Hayashi S et al (2018) Histological evaluation of early-phase changes in the osteochondral unit after microfracture in a full-thickness cartilage defect rat model. Am J Sports Med 46(12):3032–3039

    Article  PubMed  Google Scholar 

  • Hill KL et al (2010) Human embryonic stem cell-derived vascular progenitor cells capable of endothelial and smooth muscle cell function. Exp Hematol 38(3):246–257.e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoben GM, Willard VP, Athanasiou KA (2009) Fibrochondrogenesis of hESCs: growth factor combinations and cocultures. Stem Cells Dev 18(2):283–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofrichter M et al (2017) Comparative performance analysis of human iPSC-derived and primary neural progenitor cells (NPC) grown as neurospheres in vitro. Stem Cell Res 25:72–82

    Article  CAS  PubMed  Google Scholar 

  • Hontani K et al (2019) Chondrogenic differentiation of mouse induced pluripotent stem cells using the three-dimensional culture with ultra-purified alginate gel. J Biomed Mater Res A 107(5):1086–1093

    Article  CAS  PubMed  Google Scholar 

  • Hoolwerff MV et al (2021) High-impact FN1 mutation decreases chondrogenic potential and affects cartilage deposition via decreased binding to collagen type II. Sci Adv 7(45):eabg8583

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang CYC, Reuben PM, Cheung HS (2005) Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow–derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 23(8):1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Huang L et al (2018) Synergistic effects of FGF-18 and TGF-β3 on the chondrogenesis of human adipose-derived mesenchymal stem cells in the pellet culture. Stem Cells Int 2018:7139485

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang P et al (2020) Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res 116(2):353–367

    Article  CAS  PubMed  Google Scholar 

  • Hurst JM et al (2010) Rehabilitation following microfracture for chondral injury in the knee. Clin Sports Med 29(2):257–265

    Article  PubMed  Google Scholar 

  • Hwang NS et al (2006a) Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells 24(2):284–291

    Article  CAS  PubMed  Google Scholar 

  • Hwang NS et al (2006b) Enhanced chondrogenic differentiation of murine embryonic stem cells in hydrogels with glucosamine. Biomaterials 27(36):6015–6023

    Article  CAS  PubMed  Google Scholar 

  • Hwang NS, Varghese S, Elisseeff J (2008a) Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One 3(6):e2498

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang YS, Polak JM, Mantalaris A (2008b) In vitro direct osteogenesis of murine embryonic stem cells without embryoid body formation. Stem Cells Dev 17(5):963–970

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y et al (2017) IGF-1 gene transfer to human synovial MSCs promotes their chondrogenic differentiation potential without induction of the hypertrophic phenotype. Stem Cells Int 2017:5804147

    Article  PubMed  PubMed Central  Google Scholar 

  • Im G-I (2022) Pluripotent stem cells: embryonic/fetal stem cells and induced pluripotent stem cells. In: Orthobiologics. Springer, pp 371–381

    Chapter  Google Scholar 

  • Jackson MT et al (2014) Activation of matrix metalloproteinases 2, 9, and 13 by activated protein C in human osteoarthritic cartilage chondrocytes. Arth Rheumatol 66(6):1525–1536

    Article  CAS  Google Scholar 

  • Jacquet L et al (2013) Strategy for the creation of clinical grade hESC line banks that HLA-match a target population. EMBO Mol Med 5(1):10–17

    Article  CAS  PubMed  Google Scholar 

  • James D et al (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132(6):1273–1282

    Article  CAS  PubMed  Google Scholar 

  • Jelodari S et al (2022) New insights into cartilage tissue engineering: improvement of tissue-scaffold integration to enhance cartilage regeneration. Biomed Res Int 2022:7638245

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong SY et al (2013) Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. Stem Cells 31(10):2136–2148

    Article  CAS  PubMed  Google Scholar 

  • Jeong SY et al (2015) Autocrine action of thrombospondin-2 determines the chondrogenic differentiation potential and suppresses hypertrophic maturation of human umbilical cord blood-derived mesenchymal stem cells. Stem Cells 33(11):3291–3303

    Article  CAS  PubMed  Google Scholar 

  • Jia Z et al (2018) Repair of articular cartilage defects with intra-articular injection of autologous rabbit synovial fluid-derived mesenchymal stem cells. J Transl Med 16(1):1–12

    Article  Google Scholar 

  • Jiang S et al (2020) Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope. Stem Cells Int 2020:5690252

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang S et al (2021) Research progress on stem cell therapies for articular cartilage regeneration. Stem Cells Int 2021:8882505

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonidi Shariatzadeh F et al (2018) Use of stem cells in cartilage tissue regeneration and engineering: a review. Pathobiol Res 21(1):41–63

    Google Scholar 

  • Jorgensen C, Noël D (2012) Mesenchymal stem cells in osteoarticular diseases: an update. Int J Mol Cell Med 1(1):1–10

    Google Scholar 

  • Jukes JM et al (2008) Critical steps toward a tissue-engineered cartilage implant using embryonic stem cells. Tissue Eng Part A 14(1):135–147

    Article  CAS  PubMed  Google Scholar 

  • Kamaraj A et al (2021) Use of human-induced pluripotent stem cells for cartilage regeneration in vitro and within chondral defect models of knee joint cartilage in vivo: a Preferred Reporting Items for Systematic Reviews and Meta-Analyses systematic literature review. Cytotherapy 23(8):647–661

    Article  PubMed  Google Scholar 

  • Kang S-W et al (2012) Increase of chondrogenic potentials in adipose-derived stromal cells by co-delivery of type I and type II TGFβ receptors encoding bicistronic vector system. J Control Release 160(3):577–582

    Article  CAS  PubMed  Google Scholar 

  • Kang R et al (2015) Mesenchymal stem cells derived from human-induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther 6(1):144

    Article  PubMed  PubMed Central  Google Scholar 

  • Kangari P et al (2020a) Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 11(1):492

    Article  PubMed  PubMed Central  Google Scholar 

  • Kangari P et al (2020b) Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 11(1):1–21

    Article  Google Scholar 

  • Karlsson C et al (2009) Human embryonic stem cell-derived mesenchymal progenitors—potential in regenerative medicine. Stem Cell Res 3(1):39–50

    Article  PubMed  Google Scholar 

  • Kawaguchi J, Mee PJ, Smith AG (2005) Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone 36(5):758–769

    Article  CAS  PubMed  Google Scholar 

  • Kawata M et al (2019) Simple and robust differentiation of human pluripotent stem cells toward chondrocytes by two small-molecule compounds. Stem Cell Rep 13(3):530–544

    Article  CAS  Google Scholar 

  • Kean TJ et al (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013:732742

    Article  PubMed  PubMed Central  Google Scholar 

  • Khajeh S et al (2021) Cartilage tissue and therapeutic strategies for cartilage repair. Curr Mol Med 21(1):56–72

    Article  CAS  PubMed  Google Scholar 

  • Khoei SG et al (2020) The use of mesenchymal stem cells and their derived extracellular vesicles in cardiovascular disease treatment. Curr Stem Cell Res Ther 15(7):623–638

    Article  CAS  PubMed  Google Scholar 

  • Kim JH et al (2005) Overexpression of SOX9 in mouse embryonic stem cells directs the immediate chondrogenic commitment. Exp Mol Med 37(4):261–268

    Article  CAS  PubMed  Google Scholar 

  • Kim M et al (2012) Transient exposure to TGF-β3 improves the functional chondrogenesis of MSC-laden hyaluronic acid hydrogels. J Mech Behav Biomed Mater 11:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY et al (2022) Review of the current trends in clinical trials involving induced pluripotent stem cells. Stem Cell Rev Rep 18(1):142–154

    Article  PubMed  Google Scholar 

  • Klimanskaya I, Kimbrel EA, Lanza R (2020) Chapter 23: Embryonic stem cells. In: Lanza R et al (eds) Principles of tissue engineering, 5th edn. Academic Press, pp 421–434

    Chapter  Google Scholar 

  • Ko JY et al (2014) In vitro chondrogenesis and in vivo repair of osteochondral defect with human-induced pluripotent stem cells. Biomaterials 35(11):3571–3581

    Article  CAS  PubMed  Google Scholar 

  • Koay EJ, Hoben GM, Athanasiou KA (2007) Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25(9):2183–2190

    Article  CAS  PubMed  Google Scholar 

  • Koci B et al (2017) An impedance-based approach using human iPSC-derived cardiomyocytes significantly improves in vitro prediction of in vivo cardiotox liabilities. Toxicol Appl Pharmacol 329:121–127

    Article  CAS  PubMed  Google Scholar 

  • Kondo T et al (2017) iPSC-based compound screening and in vitro trials identify a synergistic anti-amyloid β combination for Alzheimer’s disease. Cell Rep 21(8):2304–2312

    Article  CAS  PubMed  Google Scholar 

  • Kramer J et al (2000) Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev 92(2):193–205

    Article  CAS  PubMed  Google Scholar 

  • Kwon HJ, Lee GS, Chun H (2016) Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors. Sci Rep 6(1):1–13

    Article  Google Scholar 

  • Lach MS et al (2022) The induced pluripotent stem cells in articular cartilage regeneration and disease modelling: are we ready for their clinical use? Cell 11(3):529

    Article  CAS  Google Scholar 

  • Lamo-Espinosa JM et al (2020) Phase II multicenter randomized controlled clinical trial on the efficacy of intra-articular injection of autologous bone marrow mesenchymal stem cells with platelet-rich plasma for the treatment of knee osteoarthritis. J Transl Med 18(1):1–9

    Article  Google Scholar 

  • Lamo-Espinosa JM et al (2021) Long-term efficacy of autologous bone marrow mesenchymal stromal cells for treatment of knee osteoarthritis. J Transl Med 19(1):1–4

    Article  Google Scholar 

  • Lee WY-W, Wang B (2017) Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives. J Orthop Transl 9:76–88

    Google Scholar 

  • Lee G et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461(7262):402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AS et al (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19(8):998–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J et al (2015) Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human-induced pluripotent stem cells. FASEB J 29(8):3399–3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H-L et al (2016) Transforming growth factor-β-induced KDM4B promotes chondrogenic differentiation of human mesenchymal stem cells. Stem Cells (Dayton, Ohio) 34(3):711–719

    Article  CAS  PubMed  Google Scholar 

  • Lee WS et al (2019) Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl Med 8(6):504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M-S et al (2021) Comparative evaluation of isogenic mesodermal and ectomesodermal chondrocytes from human iPSCs for cartilage regeneration. Science. Advances 7(21):eabf0907

    CAS  Google Scholar 

  • Lefebvre V et al (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17(4):2336–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei M, Liu SQ, Liu YL (2008) Resveratrol protects bone marrow mesenchymal stem cell-derived chondrocytes cultured on chitosan-gelatin scaffolds from the inhibitory effect of interleukin-1β. Acta Pharmacol Sin 29(11):1350–1356

    Article  CAS  PubMed  Google Scholar 

  • Lemos Dario R, Duffield Jeremy S (2018) Tissue-resident mesenchymal stromal cells: implications for tissue-specific antifibrotic therapies. Sci Transl Med 10(426):eaan5174

    Article  PubMed  Google Scholar 

  • Lespasio MJ et al (2017) Knee osteoarthritis: a primer. Perm J 21:16–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2016) Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair. Stem Cell Res Ther 7(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M et al (2017) Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthr Cartil 25(10):1577–1587

    Article  CAS  Google Scholar 

  • Li L et al (2018) Mesenchymal stem cells in combination with hyaluronic acid for articular cartilage defects. Sci Rep 8(1):1–11

    Google Scholar 

  • Li H et al (2019) Immunomodulatory functions of mesenchymal stem cells in tissue engineering. Stem Cells Int 2019:9671206

    PubMed  PubMed Central  Google Scholar 

  • Lietman SA (2016) Induced pluripotent stem cells in cartilage repair. World J Orthop 7(3):149–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu G et al (2007) Optimal combination of soluble factors for tissue engineering of permanent cartilage from cultured human chondrocytes. J Biol Chem 282(28):20407–20415

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2010) Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther 12(6):R210

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z et al (2018) Looking into the future: toward advanced 3D biomaterials for stem-cell-based regenerative medicine. Adv Mater 30(17):1705388

    Article  Google Scholar 

  • Lo Monaco M et al (2018) Stem cells for cartilage repair: preclinical studies and insights in translational animal models and outcome measures. Stem Cells Int 2018:9079538

    Article  PubMed  PubMed Central  Google Scholar 

  • Lópiz-Morales Y et al (2010) In vivo comparison of the effects of rhBMP-2 and rhBMP-4 in osteochondral tissue regeneration. Eur Cell Mater 20(367):e78

    Google Scholar 

  • Lu L et al (2019) Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Res Ther 10(1):1–10

    Article  Google Scholar 

  • Luo S et al (2013) Inactivation of Wnt/β-catenin signaling in human adipose-derived stem cells is necessary for chondrogenic differentiation and maintenance. Biomed Pharmacother 67(8):819–824

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Liao J, Cai X (2018) Different sources of stem cells and their application in cartilage tissue engineering. Curr Stem Cell Res Ther 13(7):568–575

    Article  CAS  PubMed  Google Scholar 

  • Majka M et al (2017) Concise review: mesenchymal stem cells in cardiovascular regeneration: emerging research directions and clinical applications. Stem Cells Transl Med 6(10):1859–1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Mamidi MK et al (2016) Mesenchymal stromal cells for cartilage repair in osteoarthritis. Osteoarthr Cartil 24(8):1307–1316

    Article  CAS  Google Scholar 

  • Matas J et al (2019) Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. Stem Cells Transl Med 8(3):215–224

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y et al (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91(10):1775–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medvedev SP et al (2010) Human-induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem Cells Dev 20(6):1099–1112

    Article  PubMed  Google Scholar 

  • Medvedeva EV et al (2018) Repair of damaged articular cartilage: current approaches and future directions. Int J Mol Sci 19(8):2366

    Article  PubMed  PubMed Central  Google Scholar 

  • Meirelles LDS, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(11):2204–2213

    Article  CAS  Google Scholar 

  • Mithoefer K et al (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 37(10):2053–2063

    Article  PubMed  Google Scholar 

  • Miyanishi K et al (2006) Effects of hydrostatic pressure and transforming growth factor-β 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng 12(6):1419–1428

    Article  CAS  PubMed  Google Scholar 

  • Mokbel AN et al (2011) Homing and reparative effect of intra-articular injection of autologus mesenchymal stem cells in osteoarthritic animal model. BMC Musculoskelet Disord 12(1):259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy C et al (2018) The potency of induced pluripotent stem cells in cartilage regeneration and osteoarthritis treatment. Adv Exp Med Biol 1079:55–68

    Article  CAS  PubMed  Google Scholar 

  • Musumeci G et al (2015) Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci 16(3):6093–6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najar M et al (2020) Mesenchymal stromal cell immunology for efficient and safe treatment of osteoarthritis. Front Cell Dev Biol 8:567813

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1. Arthritis Rheum 60(12):3686–3692

    Article  CAS  PubMed  Google Scholar 

  • Nakayama N et al (2003) Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal progenitor cells. J Cell Sci 116(Pt 10):2015–2028

    Article  CAS  PubMed  Google Scholar 

  • Nakayama N, Ravuri S, Huard J (2021) Rejuvenated stem/progenitor cells for cartilage repair using the pluripotent stem cell technology. Bioengineering (Basel) 8(4):46

    Article  CAS  PubMed  Google Scholar 

  • Nam Y et al (2017) Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration. Stem Cell Res Ther 8(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  • Nam Y et al (2018) Current therapeutic strategies for stem cell-based cartilage regeneration. Stem Cells Int 2018:8490489

    Article  PubMed  PubMed Central  Google Scholar 

  • Nejadnik H et al (2015) Improved approach for chondrogenic differentiation of human induced pluripotent stem cells. Stem Cell Rev Rep 11(2):242–253

    Article  CAS  PubMed  Google Scholar 

  • Neybecker P et al (2020) Respective stemness and chondrogenic potential of mesenchymal stem cells isolated from human bone marrow, synovial membrane, and synovial fluid. Stem Cell Res Ther 11(1):1–12

    Article  Google Scholar 

  • Nguyen D et al (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep 7(1):658

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Conor CJ, Case N, Guilak F (2013) Mechanical regulation of chondrogenesis. Stem Cell Res Ther 4(4):1–13

    Article  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  PubMed  Google Scholar 

  • Ozay EI et al (2019) Cymerus™ iPSC-MSCs significantly prolong survival in a pre-clinical, humanized mouse model of Graft-vs-host disease. Stem Cell Res 35:101401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palazzo C et al (2016) Risk factors and burden of osteoarthritis. Ann Phys Rehabil Med 59(3):134–138

    Article  PubMed  Google Scholar 

  • Pawitan JA (2014) Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int 2014:965849

    Article  PubMed  PubMed Central  Google Scholar 

  • Pretemer Y et al (2021) Differentiation of hypertrophic chondrocytes from human iPSCs for the in vitro modeling of chondrodysplasias. Stem Cell Rep 16(3):610–625

    Article  CAS  Google Scholar 

  • Puetzer JL, Petitte JN, Loboa EG (2010) Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng Part B Rev 16(4):435–444

    Article  CAS  PubMed  Google Scholar 

  • Qu C et al (2013) Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int J Biochem Cell Biol 45(8):1802–1812

    Article  CAS  PubMed  Google Scholar 

  • Reissis D et al (2016) Current clinical evidence for the use of mesenchymal stem cells in articular cartilage repair. Expert Opin Biol Ther 16(4):535–557

    Article  CAS  PubMed  Google Scholar 

  • Roark EF, Greer K (1994) Transforming growth factor-beta and bone morphogenetic protein-2 act by distinct mechanisms to promote chick limb cartilage differentiation in vitro. Dev Dyn 200(2):103–116

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez Ruiz A et al (2021) Cartilage from human-induced pluripotent stem cells: comparison with neo-cartilage from chondrocytes and bone marrow mesenchymal stromal cells. Cell Tissue Res 386(2):309–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Roseti L et al (2019) Articular cartilage regeneration in osteoarthritis. Cells 8(11):1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiko P et al (2008) Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res/Rev Mutat Res 658(1–2):68–94

    Article  CAS  Google Scholar 

  • Samadi P et al (2021) Therapeutic applications of mesenchymal stem cells:: a comprehensive review. Curr Stem Cell Res Ther 16(3):323–353

    Article  CAS  PubMed  Google Scholar 

  • Sawatjui N et al (2015) Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells. Mater Sci Eng C 52:90–96

    Article  CAS  Google Scholar 

  • Sawatjui N et al (2018) Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte-and MSC-based tissue-engineered cartilage. J Tissue Eng Regen Med 12(5):1220–1229

    Article  CAS  PubMed  Google Scholar 

  • Schätti O et al (2011) A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur Cell Mater 22(214–225):b97

    Google Scholar 

  • Schmal H et al (2010) Association between expression of the bone morphogenetic proteins 2 and 7 in the repair of circumscribed cartilage lesions with clinical outcome. BMC Musculoskelet Disord 11(1):1–8

    Article  Google Scholar 

  • Seidl CI, Fulga TA, Murphy CL (2019) CRISPR-Cas9 targeting of MMP13 in human chondrocytes leads to significantly reduced levels of the metalloproteinase and enhanced type II collagen accumulation. Osteoarthr Cartil 27(1):140–147

    Article  CAS  Google Scholar 

  • Sekiya I et al (2000) SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem 275(15):10738–10744

    Article  CAS  PubMed  Google Scholar 

  • Shakibaei M et al (2007) Resveratrol inhibits IL-1β–induced stimulation of caspase-3 and cleavage of PARP in human articular chondrocytes in vitro. Ann N Y Acad Sci 1095(1):554–563

    Article  CAS  PubMed  Google Scholar 

  • Simon TM, Jackson DW (2018) Articular cartilage: injury pathways and treatment options. Sports Med Arthrosc Rev 26(1):31–39

    Article  PubMed  Google Scholar 

  • Sirenko O et al (2013) Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. J Biomol Screen 18(1):39–53

    Article  CAS  PubMed  Google Scholar 

  • Solanki K et al (2021) Articular cartilage repair & joint preservation: a review of the current status of biological approach. J Clin Orthop Trauma 22:101602

    Article  PubMed  PubMed Central  Google Scholar 

  • Soliman H et al (2021) Multipotent stromal cells: one name, multiple identities. Cell Stem Cell 28(10):1690–1707

    Article  CAS  PubMed  Google Scholar 

  • Somoza RA et al (2014) Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev 20(6):596–608

    Article  PubMed  PubMed Central  Google Scholar 

  • Spakova T et al (2018) Influence of kartogenin on chondrogenic differentiation of human bone marrow-derived MSCs in 2D culture and in co-cultivation with OA osteochondral explant. Molecules 23(1):181

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinmetz NJ et al (2015) Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomater 21:142–153

    Article  CAS  PubMed  Google Scholar 

  • Sui Y, Clarke T, Khillan JS (2003) Limb bud progenitor cells induce differentiation of pluripotent embryonic stem cells into chondrogenic lineage. Differentiation 71(9–10):578–585

    Article  CAS  PubMed  Google Scholar 

  • Sundberg M et al (2013) Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31(8):1548–1562

    Article  CAS  PubMed  Google Scholar 

  • Takahashi I et al (1998) Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J Cell Sci 111(14):2067–2076

    Article  CAS  PubMed  Google Scholar 

  • Tan HL et al (2009) mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis. Stem Cells 27(8):1792–1801

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H et al (2004) Chondrogenic differentiation of murine embryonic stem cells: effects of culture conditions and dexamethasone. J Cell Biochem 93(3):454–462

    Article  CAS  PubMed  Google Scholar 

  • Taniyama T et al (2015) Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2. Artif Organs 39(6):529–535

    Article  CAS  PubMed  Google Scholar 

  • Tao S-C et al (2017) Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 7(1):180–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teunissen M et al (2021) The lower in vitro chondrogenic potential of canine adipose tissue-derived mesenchymal stromal cells (MSC) compared to bone marrow-derived MSC is not improved by BMP-2 or BMP-6. Vet J 269:105605

    Article  CAS  PubMed  Google Scholar 

  • Tichy ED, Mourkioti F (2018) Human skeletal stem cells: the markers provide some clues in the hunt for hidden treasure. Cell Stem Cell 23(4):462–463

    Article  CAS  PubMed  Google Scholar 

  • Toh WS et al (2005) Combined effects of TGFbeta1 and BMP2 in serum-free chondrogenic differentiation of mesenchymal stem cells induced hyaline-like cartilage formation. Growth Factors 23(4):313–321

    Article  CAS  PubMed  Google Scholar 

  • Toh WS et al (2007) Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25(4):950–960

    Article  CAS  PubMed  Google Scholar 

  • Toh WS et al (2009) Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro. J Cell Mol Med 13(9B):3570–3590

    Article  PubMed  PubMed Central  Google Scholar 

  • Toh WS et al (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31(27):6968–6980

    Article  CAS  PubMed  Google Scholar 

  • Toh WS, Lee EH, Cao T (2011) Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Rev Rep 7(3):544–559

    Article  PubMed  Google Scholar 

  • Uebersax L, Merkle HP, Meinel L (2008) Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J Control Release 127(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Urlić I, Ivković A (2021) Cell sources for cartilage repair—biological and clinical perspective. Cell 10(9):2496

    Article  Google Scholar 

  • Vágó J et al (2021) Cyclic uniaxial mechanical load enhances chondrogenesis through entraining the molecular circadian clock. J Pineal Res 73:e12827

    Google Scholar 

  • Vangsness CT Jr et al (2014) Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. JBJS 96(2):90–98

    Article  Google Scholar 

  • Vats A et al (2006) Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng 12(6):1687–1697

    Article  CAS  PubMed  Google Scholar 

  • Vizoso FJ et al (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(9):1852

    Article  PubMed  PubMed Central  Google Scholar 

  • Vonk LA et al (2015) Autologous, allogeneic, induced pluripotent stem cell or a combination stem cell therapy? Where are we headed in cartilage repair and why: a concise review. Stem Cell Res Ther 6(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakitani S et al (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil 10(3):199–206

    Article  CAS  Google Scholar 

  • Wang Y et al (2017) Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther 8(1):189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C-Z et al (2018a) Enhancement of chondrogenesis of adipose-derived stem cells in HA-PNIPAAm-CL hydrogel for cartilage regeneration in rabbits. Sci Rep 8(1):1–12

    Google Scholar 

  • Wang M, Yuan Q, Xie L (2018b) Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int 2018:3057624

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T et al (2019) Enhanced chondrogenesis from human embryonic stem cells. Stem Cell Res 39:101497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2020) Effect of different aged cartilage ECM on chondrogenesis of BMSCs in vitro and in vivo. Regen Biomater 7(6):583–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei W, Dai H (2021) Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges. Bioactive Mater 6(12):4830–4855

    Article  CAS  Google Scholar 

  • Wert GD, Mummery C (2003) Human embryonic stem cells: research, ethics and policy. Hum Reprod 18(4):672–682

    Article  PubMed  Google Scholar 

  • Willard VP et al (2021) Transient receptor potential vanilloid 4 as a regulator of induced pluripotent stem cell chondrogenesis. Stem Cells 39(11):1447–1456

    Article  CAS  PubMed  Google Scholar 

  • Wu L et al (2011) Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng A 17(9–10):1425–1436

    Article  CAS  Google Scholar 

  • Wu C-L et al (2021) Single-cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun 12(1):362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y et al (2019) Biomaterials for stem cell engineering and biomanufacturing. Bioactive Mater 4:366–379

    Article  Google Scholar 

  • Yamagata K, Nakayamada S, Tanaka Y (2018) Use of mesenchymal stem cells seeded on the scaffold in articular cartilage repair. Inflam Regen 38(1):1–8

    Google Scholar 

  • Yamanaka S (2020) Pluripotent stem cell-based cell therapy—promise and challenges. Cell Stem Cell 27(4):523–531

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Krawetz R, Rancourt DE (2009) Loss of discordant cells during micro-mass differentiation of embryonic stem cells into the chondrocyte lineage. Cell Death Differ 16(2):278–286

    Article  CAS  PubMed  Google Scholar 

  • Yang Z et al (2009) Stage-dependent effect of TGF-beta1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev 18(6):929–940

    Article  CAS  PubMed  Google Scholar 

  • Yang Z et al (2020) Endogenous cell recruitment strategy for articular cartilage regeneration. Acta Biomater 114:31–52

    Article  CAS  PubMed  Google Scholar 

  • Yoo JU et al (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80(12):1745–1757

    Article  CAS  PubMed  Google Scholar 

  • Zakrzewski W et al (2019) Stem cells: past, present, and future. Stem Cell Res Ther 10(1):1–22

    Article  Google Scholar 

  • Zha K et al (2021) Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 6(1):1–15

    Article  Google Scholar 

  • Zhang Q, Lai D (2020) Application of human amniotic epithelial cells in regenerative medicine: a systematic review. Stem Cell Res Ther 11(1):1–16

    Article  Google Scholar 

  • Zhang Z et al (2006) Reorganization of actin filaments enhances chondrogenic differentiation of cells derived from murine embryonic stem cells. Biochem Biophys Res Commun 348(2):421–427

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2018) Co-culture systems-based strategies for articular cartilage tissue engineering. J Cell Physiol 233(3):1940–1951

    Article  CAS  PubMed  Google Scholar 

  • Zhang R et al (2019) Mesenchymal stem cell-related therapies for cartilage lesions and osteoarthritis. Am J Transl Res 11(10):6275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S et al (2020) Articular cartilage regeneration: the role of endogenous mesenchymal stem/progenitor cell recruitment and migration. In: Seminars in arthritis and rheumatism. Elsevier

    Google Scholar 

  • Zhao T et al (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215

    Article  CAS  PubMed  Google Scholar 

  • Zhao X et al (2019a) Multi-compositional MRI evaluation of repair cartilage in knee osteoarthritis with treatment of allogeneic human adipose-derived mesenchymal progenitor cells. Stem Cell Res Ther 10(1):308

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X et al (2019b) Multi-compositional MRI evaluation of repair cartilage in knee osteoarthritis with treatment of allogeneic human adipose-derived mesenchymal progenitor cells. Stem Cell Res Ther 10(1):1–15

    Article  Google Scholar 

  • Zhao L-N et al (2021) Bone marrow mesenchymal stem cell therapy regulates gut microbiota to improve post-stroke neurological function recovery in rats. World J Stem Cells 13(12):1905–1917

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou S et al (2019) Determinants of stem cell lineage differentiation toward chondrogenesis versus adipogenesis. Cell Mol Life Sci 76(9):1653–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y et al (2016) Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell-derived chondrocytes. BMC Biotechnol 16(1):78

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H et al (2018) SAT0057 The effect of exosomes from bone marrow mesenchymal stem cells on osteoarthritis. Ann Rheum Dis 77(Suppl 2):893

    Google Scholar 

  • Zhuo Q et al (2012) Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol 8(12):729–737

    Article  CAS  PubMed  Google Scholar 

  • Zur Nieden NI et al (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 5(1):1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahnazari, M. et al. (2023). Stem Cells Therapy for Cartilage Regeneration in Clinic: Challenges and Opportunities. In: Baghaban Eslaminejad, M., Hosseini, S. (eds) Cartilage: From Biology to Biofabrication. Springer, Singapore. https://doi.org/10.1007/978-981-99-2452-3_17

Download citation

Publish with us

Policies and ethics