Skip to main content

Osteochondral Unit Approach for Articular Cartilage Regeneration

  • Chapter
  • First Online:
Cartilage: From Biology to Biofabrication
  • 321 Accesses

Abstract

It is of great challenge to repair and regenerate osteochondral defects (OCDs) as the poor self-healing ability and spatial complexity of osteochondral units. Current non-surgical and surgical treatments for OCDs are unsatisfactory and encounter many limitations, difficulties and risks. Further development of more effective, targeted therapeutic approaches is necessary to repair and regenerate the osteochondral unit. The primary tissue engineering (TE) strategy is to mimic the native osteochondral structure and composition to induce zone-specific tissue regeneration. The fundamental requirements of osteochondral scaffolds are good biocompatibility, bioactivity and surface topography, appropriate biodegradability, adequate mechanical strength and suitable architecture and porosity. By careful selection of biomaterials, traditional TE approaches were adopted for osteochondral regeneration, including cell-free and cell-seeding, cell-based and scaffold-free approaches. With the emerging of three-dimensional (3D) printing technology, the hierarchical architecture of the osteochondral unit was precisely mimicked with biphasic, multiphasic and even gradient scaffolds. It is expected that further advancing TE approaches will achieve clinical translation of osteochondral scaffolds without life-long treatment or revision surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi N, Hamlet S, Love RM, Nguyen N (2020) Porous scaffolds for bone regeneration. J Sci Adv Mater Devices 5:1–9

    Article  Google Scholar 

  • Advincula RC, Dizon JRC, Caldona EB, Viers RA, Siacor FDC, Maalihan RD, Espera AH (2021) On the progress of 3D-printed hydrogels for tissue engineering. MRS Commun 11:539–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:S96–S101

    Article  PubMed  PubMed Central  Google Scholar 

  • Amani H, Arzaghi H, Bayandori M, Dezfuli AS, Pazoki-Toroudi H, Shafiee A, Moradi L (2019) Controlling cell behavior through the Design of Biomaterial Surfaces: a focus on surface modification techniques. Adv Mater Interfaces 6:1–30

    Article  Google Scholar 

  • Amann E, Amirall A, Franco AR, Poh PSP, Sola Dueñas FJ, Fuentes Estévez G, Leonor IB, Reis RL, van Griensven M, Balmayor ER (2021) A graded, porous composite of natural biopolymers and octacalcium phosphate guides osteochondral differentiation of stem cells. Adv Healthc Mater 10:1–18

    Article  Google Scholar 

  • Amjad Z, Koutsoukos P, Tomson MB, Nancollas GH (1978) The growth of hydroxyapatite from solution. A new constant composition method. J Dent Res 57:909

    Article  CAS  PubMed  Google Scholar 

  • Anandhapadman A, Venkateswaran A, Jayaraman H, Veerabadran Ghone N (2022) Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects. Biotechnol Prog 38:1–19

    Article  Google Scholar 

  • Armiento AR, Stoddart MJ, Alini M, Eglin D (2018) Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater 65:1–20

    Article  CAS  PubMed  Google Scholar 

  • Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S (2017) Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol 45:185–192

    Article  CAS  PubMed  Google Scholar 

  • Beane OS, Darling EM (2012) Isolation, characterization, and differentiation of stem cells for cartilage regeneration. Ann Biomed Eng 40:2079–2097

    Article  PubMed  PubMed Central  Google Scholar 

  • Bittner SM, Guo JL, Melchiorri A, Mikos AG (2018) Three-dimensional printing of multilayered tissue engineering scaffolds. Mater Today 21:861–874

    Article  CAS  Google Scholar 

  • Branam GM, Saber AY (2022) Osteochondral autograft transplantation, StatPearls. StatPearls Publishing, Treasure Island, FL

    Google Scholar 

  • Browe DC, Díaz-Payno PJ, Freeman FE, Schipani R, Burdis R, Ahern DP, Nulty JM, Guler S, Randall LD, Buckley CT, Brama PAJ, Kelly DJ (2022) Bilayered extracellular matrix-derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair. Acta Biomater 143:266–281

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32:4793–4805

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Wang M, Wang J, Chen X, Li X, Xiao Y, Zhang X (2019a) Effects of hydroxyapatite surface nano/micro-structure on osteoclast formation and activity. J Mater Chem B 7:7574–7587

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Deng C, Li J, Yao Q, Chang J, Wang L, Wu C (2019b) 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials 196:138–150

    Article  CAS  PubMed  Google Scholar 

  • Chocholata P, Kulda V, Babuska V (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel) 12(4):568. https://doi.org/10.3390/ma12040568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coathup MJ, Blunn GW, Mirhosseini N, Erskine K, Liu Z, Garrod DR, Li L (2017) Controlled laser texturing of titanium results in reliable osteointegration. J Orthop Res 35:820–828

    Article  CAS  PubMed  Google Scholar 

  • Deng C, Chang J, Wu C (2019a) Bioactive scaffolds for osteochondral regeneration. J Orthop Transl 17:15–25

    Google Scholar 

  • Deng C, Lin R, Zhang M, Qin C, Yao Q, Wang L, Chang J, Wu C (2019b) Micro/nanometer-structured scaffolds for regeneration of both cartilage and subchondral bone. Adv Funct Mater 29:1806068

    Article  Google Scholar 

  • Deng C, Zhou Q, Zhang M, Li T, Chen H, Xu C, Feng Q, Wang X, Yin F, Cheng Y, Wu C (2022) Bioceramic scaffolds with Antioxidative functions for ROS scavenging and osteochondral regeneration. Adv Sci 9:2105727

    Article  CAS  Google Scholar 

  • Di Luca A, Szlazak K, Lorenzo-Moldero I, Ghebes CA, Lepedda A, Swieszkowski W, Van Blitterswijk C, Moroni L (2016a) Influencing chondrogenic differentiation of human mesenchymal stromal cells in scaffolds displaying a structural gradient in pore size. Acta Biomater 36:210–219

    Article  PubMed  Google Scholar 

  • Di Luca A, Ostrowska B, Lorenzo-Moldero I, Lepedda A, Swieszkowski W, Van Blitterswijk C, Moroni L (2016b) Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Sci Rep 6:1–13

    Google Scholar 

  • Di Luca A, Lorenzo-Moldero I, Mota C, Lepedda A, Auhl D, Van Blitterswijk C, Moroni L (2016c) Tuning cell differentiation into a 3D scaffold presenting a pore shape gradient for osteochondral regeneration. Adv Healthc Mater 5:1753–1763

    Article  PubMed  Google Scholar 

  • Donnaloja F, Jacchetti E, Soncini M, Raimondi MT (2020) Natural and synthetic polymers for bone scaffolds optimization. Polymers (Basel) 12:1–27

    Article  Google Scholar 

  • Du Y, Liu H, Yang Q, Wang S, Wang J, Ma J, Noh I, Mikos AG, Zhang S (2017) Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials 137:37–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elder BD, Athanasiou KA (2009) Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng - Part B Rev 15:43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  • Erggelet C, Vavken P (2016) Microfracture for the treatment of cartilage defects in the knee joint—a golden standard? J Clin Orthop Trauma 7:145–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao F, Xu Z, Liang Q, Liu B, Li H, Wu Y, Zhang Y, Lin Z, Wu M, Ruan C, Liu W (2018) Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect. Adv Funct Mater 28:1706644. https://doi.org/10.1002/adfm.201706644

    Article  CAS  Google Scholar 

  • Gao F, Xu Z, Liang Q, Li H, Peng L, Wu M, Zhao X, Cui X, Ruan C, Liu W (2019) Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds. Adv Sci 6(15):1900867. https://doi.org/10.1002/advs.201900867

    Article  CAS  Google Scholar 

  • Gentile F, Tirinato L, Battista E, Causa F, Liberale C, di Fabrizio EM, Decuzzi P (2010) Cells preferentially grow on rough substrates. Biomaterials 31:7205–7212

    Article  CAS  PubMed  Google Scholar 

  • Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sport Traumatol Arthrosc 18:434–447

    Article  Google Scholar 

  • Haber DB, Logan CA, Murphy CP, Sanchez A, LaPrade RF, Provencher MT (2019) Osteochondral allograft transplantation for the knee: post-operative rehabilitation. Int J Sports Phys Ther 14:487–499

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris JD, Siston RA, Pan X, Flanigan DC (2010) Autologous chondrocyte implantation: a systematic review. J Bone Jt Surg 92:2220–2233

    Article  Google Scholar 

  • Inderhaug E, Solheim E (2019) Osteochondral autograft transplant (Mosaicplasty) for knee articular cartilage defects. JBJS Essent Surg Tech 9:e34

    Article  PubMed Central  Google Scholar 

  • Itokazu M, Wakitani S, Mera H, Tamamura Y, Sato Y, Takagi M, Nakamura H (2016) Transplantation of scaffold-free cartilage-like cell-sheets made from human bone marrow mesenchymal stem cells for cartilage repair: a preclinical study. Cartilage 7:361–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson RW, Dieterichs C (2003) The results of arthroscopic lavage and debridement of osteoarthritic knees based on the severity of degeneration. Arthroscopy 19:13–20

    Article  PubMed  Google Scholar 

  • Jeon YH, Choi JH, Sung JK, Kim TK, Cho BC, Chung HY (2007) Different effects of PLGA and chitosan scaffolds on human cartilage tissue engineering. J Craniofac Surg 18:1249–1258

    Article  PubMed  Google Scholar 

  • Jeuken RM, Roth AK, Peters RJRW, van Donkelaar CC, Thies JC, van Rhijn LW, Emans PJ (2016) Polymers in cartilage defect repair of the knee: current status and future prospects. Polymers (Basel) 8:1–30

    Article  Google Scholar 

  • Johnson LL (2002) A controlled trial of arthroscopic surgery for osteoarthritis of the knee. Arthroscopy 18:683–687

    PubMed  Google Scholar 

  • Katti DS, Lakshmi S, Langer R, Laurencin CT (2002) Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev 54:933–961

    Article  CAS  PubMed  Google Scholar 

  • Keller L, Wagner Q, Schwinté P, Benkirane-Jessel N (2015) Double compartmented and hybrid implant outfitted with well-organized 3D stem cells for osteochondral regenerative nanomedicine. Nanomedicine 10:2833–2845

    Article  CAS  PubMed  Google Scholar 

  • Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M, Lode A (2020) 3D bioprinting of osteochondral tissue substitutes—in vitro-chondrogenesis in multi-layered mineralized constructs. Sci Rep 10:1–17

    Article  Google Scholar 

  • Kim J, Bae WG, Choung HW, Lim KT, Seonwoo H, Jeong HE, Suh KY, Jeon NL, Choung PH, Chung JH (2014) Multiscale patterned transplantable stem cell patches for bone tissue regeneration. Biomaterials 35:9058–9067

    Article  CAS  PubMed  Google Scholar 

  • Kimber K, Shelton W (2010) Cartilage restoration. Minerva Ortop e Traumatol 61:333–342

    Google Scholar 

  • Kisiday JD (2019) Expansion of chondrocytes for cartilage tissue engineering: a review of chondrocyte dedifferentiation and redifferentiation as a function of growth in expansion culture. Regen Med Front 2:1–19

    Google Scholar 

  • Kon E, Robinson D, Shani J, Alves A, Di Matteo B, Ashmore K, De Caro F, Dulic O, Altschuler N (2020) Reconstruction of large osteochondral defects using a hemicondylar aragonite-based implant in a caprine model. Arthrosc - J Arthrosc Relat Surg 36:1884–1894

    Article  Google Scholar 

  • Law GW, Lee JK, Soong J, Lim JWS, Zhang KT, Tan AHC (2019) Arthroscopic debridement of the degenerative knee—is there still a role? Asia Pac J Sports Med Arthrosc Rehabil Technol 15:23–28

    PubMed  Google Scholar 

  • Lee JC, Lee SY, Min HJ, Han SA, Jang J, Lee S, Seong SC, Lee MC (2012) Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng A 18:2173–2186

    Article  CAS  Google Scholar 

  • Lee BH, Park JN, Lee EJ, Moon YW, Wang JH (2018) Therapeutic efficacy of spherical aggregated human bone marrow–derived mesenchymal stem cells cultured for osteochondral defects of rabbit knee joints. Am J Sports Med 46:2242–2252

    Article  PubMed  Google Scholar 

  • Lepage SIM, Robson N, Gilmore H, Davis O, Hooper A, St John S, Kamesan V, Gelis P, Carvajal D, Hurtig M, Koch TG (2019) Beyond cartilage repair: the role of the osteochondral unit in joint health and disease. Tissue Eng - Part B Rev 25:114–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesage C, Lafont M, Guihard P, Weiss P, Guicheux J, Delplace V (2022) Material-assisted strategies for osteochondral defect repair. Adv Sci 9:1–20

    Article  Google Scholar 

  • Li Z, Jia S, Xiong Z, Long Q, Yan S, Hao F, Liu J, Yuan Z (2018) 3D-printed scaffolds with calcified layer for osteochondral tissue engineering. J Biosci Bioeng 126:389–396

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu M, Chen F, Wang Y, Wang M, Chen X, Xiao Y, Zhang X (2020) Design of hydroxyapatite bioceramics with micro−/nano-topographies to regulate the osteogenic activities of bone morphogenetic protein-2 and bone marrow stromal cells. Nanoscale 12:7284–7300

    Article  CAS  PubMed  Google Scholar 

  • Lim TC, Chian KS, Leong KF (2010) Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration. J Biomed Mater Res A 94:1303–1311

    PubMed  Google Scholar 

  • Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31:688–705

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Peng L, Li L, Huang C, Shi K, Meng X, Wang P, Wu M, Li L, Cao H, Wu K, Zeng Q, Pan H, Lu WW, Qin L, Ruan C, Wang X (2021) 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials 279:121216

    Article  CAS  PubMed  Google Scholar 

  • Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng - Part B Rev 19:485–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love B (2017) Metallic biomaterials. In: Biomaterials. Elsevier, pp 159–184

    Chapter  Google Scholar 

  • Lu H, Hoshiba T, Kawazoe N, Koda I, Song M, Chen G (2011) Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials 32:9658–9666

    Article  CAS  PubMed  Google Scholar 

  • Madry H, Gao L, Rey-Rico A, Venkatesan JK, Müller-Brandt K, Cai X, Goebel L, Schmitt G, Speicher-Mentges S, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M (2020) Thermosensitive hydrogel based on PEO–PPO–PEO poloxamers for a controlled in situ release of recombinant adeno-associated viral vectors for effective gene therapy of cartilage defects. Adv Mater 32:1–8

    Article  Google Scholar 

  • Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233

    Article  CAS  PubMed  Google Scholar 

  • Marcacci M, Filardo G, Kon E (2013) Treatment of cartilage lesions: what works and why? Injury 44:S11–S15

    Article  PubMed  Google Scholar 

  • Mendes LF, Bosmans K, Van Hoven I, Viseu SR, Maréchal M, Luyten FP (2020) Developmental engineering of living implants for deep osteochondral joint surface defects. Bone 139:115520

    Article  CAS  PubMed  Google Scholar 

  • Mente PL, Lewis JL (1994) Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res 12:637–647

    Article  CAS  PubMed  Google Scholar 

  • Migliorini F, Maffulli N, Baroncini A, Knobe M, Tingart M, Eschweiler J (2021) Matrix-induced autologous chondrocyte implantation versus autologous matrix-induced chondrogenesis for chondral defects of the talus: a systematic review. Br Med Bull 138:144–154

    Article  PubMed  Google Scholar 

  • Migliorini F, Eschweiler J, Prinz J, Weber CD, Hofmann UK, Hildebrand F, Maffulli N (2022a) Autologous chondrocyte implantation in the knee is effective in skeletally immature patients: a systematic review. Knee Surgery Sport Traumatol Arthrosc. https://doi.org/10.1007/s00167-022-07212-y

  • Migliorini F, Maffulli N, Schenker H, Eschweiler J, Driessen A, Knobe M, Tingart M, Baroncini A (2022b) Surgical Management of Focal Chondral Defects of the talus: a Bayesian network meta-analysis. Am J Sports Med 50:2853–2859

    Article  PubMed  Google Scholar 

  • Mohammadi H, Sepantafar M (2016) Ion-doped silicate bioceramic coating of Ti-based implant. Iran Biomed J 20:189–200

    PubMed  PubMed Central  Google Scholar 

  • Morgan EF, Unnikrisnan GU, Hussein AI (2018) Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng 20:119–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosher TJ (2009) Functional anatomy and structure of the “Osteochondral Unit.” First Edit Arthritis Color Adv Imaging Arthritis https://doi.org/10.1016/B978-1-4160-4722-3.00002-1

  • Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466

    Article  CAS  PubMed  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  • Nejadnik H, Hui JH, Choong EPF, Tai BC, Lee EH (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38:1110–1116

    Article  PubMed  Google Scholar 

  • Nikhil A, Kumar A (2022) Evaluating potential of tissue-engineered cryogels and chondrocyte-derived exosomes in articular cartilage repair. Biotechnol Bioeng 119:605–625

    Article  CAS  PubMed  Google Scholar 

  • O’Shea DG, Curtin CM, O’Brien FJ (2022) Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomater Sci 10:2462–2483

    Article  PubMed  PubMed Central  Google Scholar 

  • Papenburg BJ, Rodrigues ED, Wessling M, Stamatialis D (2010) Insights into the role of material surface topography and wettability on cell-material interactions. Soft Matter 6:4377–4388

    Article  CAS  Google Scholar 

  • Park JW, Kim YJ, Park CH, Lee DH, Ko YG, Jang JH, Lee CS (2009) Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomater 5:3272–3280

    Article  CAS  PubMed  Google Scholar 

  • Porter JR, Ruckh TT, Popat KC (2009) Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 25:1539–1560

    CAS  PubMed  Google Scholar 

  • Qiu ZY, Chen C, Wang XM, Lee IS (2014) Advances in the surface modification techniques of bone-related implants for last 10 years. Regen Biomater 1:67–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci M, Tradati D, Maione A, Uboldi FM, Usellini E, Berruto M (2021) Cell-free osteochondral scaffolds provide a substantial clinical benefit in the treatment of osteochondral defects at a minimum follow-up of 5 years. J Exp Orthop 8(1):62. https://doi.org/10.1186/s40634-021-00381-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo S, Na K (2011) Mesenchymal stem cell-based tissue engineering for chondrogenesis. J Biomed Biotechnol 2011:806891. https://doi.org/10.1155/2011/806891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessa A, Perdisa F, Di Martino A, Zaffagnini S, Filardo G (2019) Cell-free biomimetic osteochondral scaffold implantation technique. JBJS Essent Surg Tech 9:1–8

    Article  Google Scholar 

  • Setton LA, Elliott DM, Mow VC (1999) Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthr Cartil 7:2–14

    Article  CAS  Google Scholar 

  • Shang L, Ma B, Wang F, Li J, Shen S, Li X, Liu H, Ge S (2020) Nanotextured silk fibroin/hydroxyapatite biomimetic bilayer tough structure regulated osteogenic/chondrogenic differentiation of mesenchymal stem cells for osteochondral repair. Cell Prolif 53:1–15

    Article  Google Scholar 

  • Shim JH, Jang KM, Hahn SK, Park JY, Jung H, Oh K, Park KM, Yeom J, Park SH, Kim SW, Wang JH, Kim K, Cho DW (2016) Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication 8(1):014102. https://doi.org/10.1088/1758-5090/8/1/014102

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Dormer N, Salash JR, Christian JM, Moore DS, Berkland C, Detamore MS (2010) Three-dimensional macroscopic scaffolds with a gradient in stiffness for functional regeneration of interfacial tissues. J Biomed Mater Res A 94:870–876

    PubMed  PubMed Central  Google Scholar 

  • Somoza RA, Welter JF, Correa D, Caplan AI (2014) Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng B Rev 20:596–608

    Article  Google Scholar 

  • Song SJ, Park CH (2019) Microfracture for cartilage repair in the knee: current concepts and limitations of systematic reviews. Ann Transl Med 7:S108–S108

    Article  PubMed  PubMed Central  Google Scholar 

  • Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1:461–468

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugawara Y, Kamioka H, Honjo T, Tezuka KI, Takano-Yamamoto T (2005) Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone 36:877–883

    Article  CAS  PubMed  Google Scholar 

  • Tamaddon M, Wang L, Liu Z, Liu C (2018) Osteochondral tissue repair in osteoarthritic joints: clinical challenges and opportunities in tissue engineering. Bio-Design Manuf 1:101–114

    Article  CAS  Google Scholar 

  • Teramura T, Onodera Y, Mihara T, Hosoi Y, Hamanishi C, Fukuda K (2010) Induction of mesenchymal progenitor cells with chondrogenic property from mouse-induced pluripotent stem cells. Cell Reprogram 12:249–261

    Article  CAS  PubMed  Google Scholar 

  • Tetteh ES, Bajaj S, Ghodadra NS, Cole BJ (2012) Basic science and surgical treatment options for articular cartilage injuries of the knee. J Orthop Sports Phys Ther 42:243–253

    Article  PubMed  Google Scholar 

  • Thorlund JB, Juhl CB, Roos EM, Lohmander LS (2015) Arthroscopic surgery for degenerative knee: systematic review and meta-analysis of benefits and harms. BMJ 350:h2747. https://doi.org/10.1136/bmj.h2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian L, Sheng Y, Huang L, Chow DH, Ho W, Tang N (2018) An innovative Mg/Ti hybrid fixation system developed for fracture fixation and healing enhancement at load-bearing skeletal site. Biomaterials 180:173–183

    Article  CAS  PubMed  Google Scholar 

  • Torrie AM, Kesler WW, Elkin J, Gallo RA (2015) Osteochondral allograft. Curr Rev Musculoskelet Med 8:413–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 3:278–314

    Article  PubMed  Google Scholar 

  • Von Der Mark K, Gauss V, Von Der Mark H, Müller P (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267:531–532

    Article  PubMed  Google Scholar 

  • Vroman I, Tighzert L (2009) Biodegradable polymers. Materials (Basel) 2:307–344

    Article  CAS  Google Scholar 

  • Wei W, Dai H (2021) Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges. Bioact Mater 6:4830–4855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34:747–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weil Y, Zeng W, Wan R, Wang J, Zhou Q, Qiu S, Singh SR (2012) Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. Eur Cells Mater 23:1–12

    Article  Google Scholar 

  • Wu Y, Yang Z, Law JBK, He AY, Abbas AA, Denslin V, Kamarul T, Hui JHP, Lee EH (2017) The combined effect of substrate stiffness and surface topography on Chondrogenic differentiation of mesenchymal stem cells. Tissue Eng Part A 23:43–54

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Lin K, Jiang X, Fang B, Xu Y, Liu J, Zeng D, Zhang M, Zhang X, Chang J, Zhang Z (2014) Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose-derived stem cells. Biomaterials 35:8514–8527

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Ji J, Jiao J, Zheng L, Hong Q, Tang H, Zhang S, Qu X, Yue B (2022) 3D printing for bone-cartilage Interface regeneration. Front Bioeng Biotechnol 10:1–19

    Google Scholar 

  • Yang K, Zhou C, Fan H, Fan Y, Jiang Q, Song P, Fan H, Chen Y, Zhang X (2017) Bio-functional design, application and trends in metallic biomaterials. Int J Mol Sci 19:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhao R, Chen S, Yuan B, Chen X, Yang Z, Song Y, Tang H, Zhu X, Zhang X (2019) Healing of osteoporotic bone defects by micro−/nano-structured calcium phosphate bioceramics. Nanoscale 11:2721–2732

    Article  PubMed  Google Scholar 

  • Yang X, Li S, Ren Y, Qiang L, Liu Y, Wang J, Dai K (2022) 3D printed hydrogel for articular cartilage regeneration. Compos Part B Eng 237:109863

    Article  CAS  Google Scholar 

  • Ye WP, Du FS, Jin WH, Yang JY, Xu Y (1997) In vitro degradation of poly(caprolactone), poly(lactide) and their block copolymers: influence of composition, temperature and morphology. React Funct Polym 32:161–168

    Article  CAS  Google Scholar 

  • Ye W, Yang Z, Cao F, Li H, Zhao T, Zhang H, Zhang Z, Yang S, Zhu J, Liu Z, Zheng J, Liu H, Ma G, Guo Q, Wang X (2022) Articular cartilage reconstruction with TGF-β1-simulating self-assembling peptide hydrogel-based composite scaffold. Acta Biomater 146:94–106

    Article  CAS  PubMed  Google Scholar 

  • Yi D, Wu C, Ma B, Ji H, Zheng X, Chang J (2014) Bioactive bredigite coating with improved bonding strength, rapid apatite mineralization and excellent cytocompatibility. J Biomater Appl 28:1343–1353

    Article  PubMed  Google Scholar 

  • Yousefi AM, Hoque ME, Prasad RGSV, Uth N (2015) Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. J Biomed Mater Res A 103:2460–2481

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Huang J, Narayan RJ (2020) Gradient scaffolds for osteochondral tissue engineering and regeneration. J Mater Chem B 8:8149–8170

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Huang H, Hao G, Zhang Y, Ding H, Fan Z, Sun L (2021) 3D printing hydrogel scaffolds with nanohydroxyapatite gradient to effectively repair osteochondral defects in rats. Adv Funct Mater 31:2006697. https://doi.org/10.1002/adfm.202006697

    Article  CAS  Google Scholar 

  • Zhou T, Li X, Li G, Tian T, Lin S, Shi S, Liao J, Cai X, Lin Y (2017) Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair. Sci Rep 7:1–13

    Google Scholar 

  • Zhou L, Gjvm VO, Malda J, Stoddart MJ, Lai Y, Richards RG, Ki-wai Ho K, Qin L (2020) Innovative tissue-engineered strategies for osteochondral defect repair and regeneration: current Progress and challenges. Adv Healthc Mater 9:1–22

    Article  CAS  Google Scholar 

  • Zhou H, Liang B, Jiang H, Deng Z, Yu K (2021) Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application. J Magnes Alloy 9:779–804

    Article  CAS  Google Scholar 

  • Zhou L, Guo P, D’Este Mong W, Xu J, Yao H, Stoddart MJ, van Osch GJVM, Ho KKW, Li Z, Qin L (2022) Functionalized hydrogels for articular cartilage tissue engineering. Engineering 13:71–90

    Article  Google Scholar 

  • Zhu Y, Kong L, Farhadi F, Xia W, Chang J, He Y, Li H (2019) An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration. Biomaterials 192:149–158

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chiuan Yen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cai, Y., Gan, S.W., Lu, W.F., Yen, CC. (2023). Osteochondral Unit Approach for Articular Cartilage Regeneration. In: Baghaban Eslaminejad, M., Hosseini, S. (eds) Cartilage: From Biology to Biofabrication. Springer, Singapore. https://doi.org/10.1007/978-981-99-2452-3_16

Download citation

Publish with us

Policies and ethics