Skip to main content

Nuclear Forensics: Role of Radiation Metrology

  • Reference work entry
  • First Online:
Handbook of Metrology and Applications

Abstract

Nuclear forensic analysis is a relatively new approach to provide technical support for the investigation of security incidents that may arise due to unauthorized use of nuclear or radioactive materials. The increasing rate of smuggling, trafficking, illegal possession, and theft of nuclear or radioactive material has become a worldwide challenge. Considering the potential hazards associated with the nuclear/radioactive material, the proper investigation and identification of the material are extremely important to prevent illegal trafficking and other unauthorized activities. The nuclear forensic analysis provides clues on the origin and intended use of nuclear materials which supports nuclear attribution. In a designated nuclear forensic laboratory, seized nuclear/radioactive material will be analyzed for the characteristic signatures using several established analytical techniques. To establish the origin and nature of samples, it is important to investigate elemental composition, isotopic composition, chemical impurities, macroscopic appearance, microstructure, etc. Comparison of the signatures using the nuclear forensic library consisting of a database of known samples, processes, etc. also is an important requirement. The analyses should be carried out following certified procedures and standard techniques. Intercomparison exercises and certified reference materials play an important role in the quality assurance of data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aggarwal SK (2016) Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology–a review. Anal Methods 8(5):942–957. https://doi.org/10.1039/C5AY02816G

  • Alamelu D, Aggarwal SK (2016) Determining the age and history of plutonium using isotope correlations and experimentally determined data on isotopic abundances of plutonium and 241Am. J Radioanal Nucl Chem 307(1):277–284. https://doi.org/10.1007/s10967-015-4426-5

  • Anderson JS (1978) Lattice imaging by high resolution electron microscopy: the role of high resolution electron microscopy in solid state chemistry. Proc Indian Acad Sci A Chem Sci 87(10):295–329. https://www.ias.ac.in/public/Volumes/jcsc/087/10/0295-0329.pdf

  • ANSI (1999) N42.14-1999 – American national standard for calibration and use of germanium spectrometers for the measurement of gamma-ray emission rates of radionuclides. IEEE. https://doi.org/10.1109/IEEESTD.1999.89430. https://ieeexplore.ieee.org/document/768889

  • Apostol AI, Pantelica A, Ortega-Feliu I, Marginean N, Sima O, Straticiuc M, Jimenez-Ramos MC, Fugaru V (2017) Ion beam analysis of elemental signatures in uranium dioxide samples: importance for nuclear forensics. J Radioanal Nucl Chem 311(2):1339–1346. https://doi.org/10.1007/s10967-016-5136-3

  • ASTM (2003) E181-98(2003). Standard test methods for detector calibration and analysis of radionuclides. https://doi.org/10.1520/E0181-98R03. https://www.astm.org/e0181-98r03.html

  • ASTM (2018) C1284-18. Standard practice for electrodeposition of the actinides for alpha spectrometry. https://doi.org/10.1520/C1284-18. https://www.astm.org/c1284-18.html

  • Betti M, Tamborini G, Koch L (1999) Use of secondary ion mass spectrometry in nuclear forensic analysis for the characterization of plutonium and highly enriched uranium particles. Anal Chem 71(14):2616–2622. https://pubs.acs.org/doi/pdf/10.1021/ac981184r

  • Brennecka GA, Borg LE, Hutcheon ID, Sharp MA, Anbar AD (2010) Natural variations in uranium isotope ratios of uranium ore concentrates: understanding the 238U/235U fractionation mechanism. Earth Planet Sci Lett 291(1–4):228–233. https://doi.org/10.1016/j.epsl.2010.01.023

  • Buchholz BA, Brown TA, Hamilton TF, Hutcheon ID, Marchetti AA, Martinelli RE, Ramon EC, Tumey SJ, Williams RW (2007) Investigating uranium isotopic distributions in environmental samples using AMS and MC-ICPMS. Nucl Instrum Methods Phys Res Sect B 259(1):733–738. https://doi.org/10.1016/j.nimb.2007.01.248

  • Charlton WS, Strohmeyer D, Stafford A, Saavedra S, Hoover AS, Rudy C (2009) The use of self-induced XRF to quantify the Pu content in PWR spent nuclear fuel. Proceedings of 31st Annual Meeting of ESARDA, Vilnius, Lithuania, JRC European Commission, p. 440. ISBN: 978-92-76-09704-4

    Google Scholar 

  • Croudace IW, Russell BC, Warwick PW (2017) Plasma source mass spectrometry for radioactive waste characterisation in support of nuclear decommissioning: a review. J Anal At Spectrom 32(3):494–526. https://doi.org/10.1039/C6JA00334F

  • De Simone D, Favalli A, MacArthur D, Moss C, Thron J (2010) Review of active interrogation techniques and considerations for their use behind an information barrier. LA-UR-10-06958, 29 September 2010. https://www.nti.org/media/pdfs/LA-UR-10-06958

  • Dey AB, Mohanan S, Damodaran D, Soneja M, Jain N, Mohan A, Vikram NK, Sood R (2012) Radiation accident at Mayapuri scrap market, Delhi, 2010. Radiat Prot Dosimetry 151(4):645–651. https://doi.org/10.1093/rpd/ncs162

  • Donohue DL (2002) Peer reviewed: strengthened nuclear safeguards. Anal Chem 74:28-A–35-A. https://doi.org/10.1021/ac021909y

  • Erdmann N et al (2008) Resonance ionisation mass spectrometry for trace analysis of long-lived radionuclides. In: Povinec PP (ed) Analysis of environmental radionuclides, radioactivity in the environment no. 11. Elsevier, Amsterdam. https://doi.org/10.1016/S1569-4860(07)11010-X

  • Eriksson M, Osan J, Jernström J, Wegrzynek D, Simon R, Chinea-Cano E, Markowicz A et al (2005) Source term identification of environmental radioactive Pu/U particles by their characterization with non-destructive spectrochemical analytical techniques. Spectrochim Acta B At Spectrosc 60(4):455–469. https://doi.org/10.1016/j.sab.2005.02.023

  • European Institute for Transuranium Elements (2003) Advances in destructive and non-destructive analysis for environmental monitoring and nuclear forensics: proceedings of an international conference on advances in destructive and non-destructive analysis for environmental monitoring and nuclear forensics and held in Karlsruhe, 21–23 October 2002, vol 394. International Atomic Energy Agency. https://www-pub.iaea.org/mtcd/publications/pdf/pub1169_web.pdf

  • Fedchenko V (ed) (2015) The new nuclear forensics: analysis of nuclear materials for security purposes. Oxford University Press. ISBN 978-0-19-873664-6

    Google Scholar 

  • Gilmore G, Hemingway J (1995) Practical gamma ray spectrometry. John Wiley & Sons. (ISBN 0-471-95150-1). https://doi.org/10.1002/rcm.1290091227

  • Hawkes PW (2013) The beginnings of electron microscopy. Elsevier Science. https://books.google.co.in/books?id=QEHgBAAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

  • Hedberg PML, Peres P, Cliff JB, Rabemananjara F, Littmann S, Thiele H, Vincent C, Albert N (2011) Improved particle location and isotopic screening measurements of sub-micron sized particles by secondary ion mass spectrometry. J Anal At Spectrom 26(2):406–413. https://doi.org/10.1039/C0JA00181C

  • Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608(2):105–139. https://doi.org/10.1016/j.aca.2007.12.012

  • Hou X, Chen W, He Y, Jones BT (2005) Analytical atomic spectrometry for nuclear forensics. Appl Spectrosc Rev 40(3):245–267. https://doi.org/10.1081/ASR-200064495

  • Inn KGW, Johnson CM, Oldham W, Jerome S, Tandon L, Schaaff T, Jones R et al (2013) The urgent requirement for new radioanalytical certified reference materials for nuclear safeguards, forensics, and consequence management. J Radioanal Nucl Chem 296(1):5–22. https://doi.org/10.1007/s10967-012-1972-y

  • International Atomic Energy Agency (2002a) Response to events involving the inadvertent movement or illicit trafficking of radioactive materials. IAEA-TECDOC-1313. IAEA, Vienna. ISBN 92–116202–2

    Google Scholar 

  • International Atomic Energy Agency (2002b) Detection of radioactive materials at borders. IAEA, Vienna. IAEA-TECDOC-1312 . ISBN 92-0-116102-6

    Google Scholar 

  • International Atomic Energy Agency (2006) Nuclear forensics support, IAEA nuclear security series no. 2: technical guidance, reference manual. IAEA, Vienna. IAEA nuclear security series, ISSN 1816–9317; no. 2. ISBN 92-0-100306-4

    Google Scholar 

  • International Atomic Energy Agency (2011a) Nuclear forensics in support of investigation. IAEA nuclear security series no. 2 (rev.1), implementing guide. IAEA, Vienna. IAEA nuclear securityseries, ISSN 1816-9317; no. 2-G (rev. 1) ISBN 978-92-0-102115-1

    Google Scholar 

  • International Atomic Energy Agency (2011b) Nuclear security recommendations on physical protection of nuclear material and nuclear facilities (INFCIRC/225/revision 5), IAEA nuclear security series no. 13. IAEA, Vienna. IAEA nuclear security series, ISSN 1816-9317; no 13, ISBN 978-92-0-111110-4

    Google Scholar 

  • International Atomic Energy Agency (2021) The incident and trafficking database (ITDB) programme, European regional transport security series (ERTSS) no. 27. IAEA, Vienna https://www.iaea.org/sites/default/files/22/01/itdb-factsheet.pdf

  • International Organization for Standardization (1999) General requirements for the competence of testing and calibration laboratories, ISO/IEC 17025:1999. ISO, Geneva. ISBN 978-92-67-10780-6

    Google Scholar 

  • International Organization for Standardization (2000) Quality management systems – fundamentals and vocabulary, ISO 9000:2000. ISO, Geneva. https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en

    Google Scholar 

  • ISO (2007) ISO 10703 – Water quality – determination of the activity concentration of radionuclides – method by high resolution gamma-ray spectrometry. https://www.iso.org/obp/ui/#iso:std:iso:10703:ed-3:v1:en

  • ISO (2010) ISO 11929 – Determination of the detection limit and decision threshold for ionizing radiation measurements. https://www.iso.org/obp/ui/#iso:std:iso:11929:-3:ed-2:v1:en

  • Keegan E, Kristo MJ, Colella M, Robel M, Williams R, Lindvall R, Eppich G et al (2014) Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia. Forensic Sci Int 240:111–121. https://doi.org/10.1016/j.forsciint.2014.04.004

  • Knoll GF (2010) Radiation detection and measurement. John Wiley & Sons. ISBN 0-471-07338-5

    Google Scholar 

  • Kristo MJ (2012) Nuclear forensics. In: L’Annunziata MF (ed) Handbook of radioactivity analysis, 3rd edn. Elsevier, Oxford. ISBN:9780123848741

    Google Scholar 

  • Krunal NJ (2014) Nuclear forensics-a review. IJIMS 1(8):152–156. https://www.ijims.com/uploads/f1b3ad2b694295132753A20.pdf

  • Mayer K, Wallenius M, Ray I (2005) Nuclear forensics—a methodology providing clues on the origin of illicitly trafficked nuclear materials. Analyst 130(4):433–441. https://doi.org/10.1016/j.jallcom.2007.01.164

  • Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113(2):884–900. https://doi.org/10.1021/cr300273f

  • Mishra S, Sahoo SK, Chaudhury P, Pradeepkumar KS (2017) Measurement and validation of uranium isotope ratio in uranium ore for isotopic fingerprinting. Radiat Prot Environ 40(1):3. https://doi.org/10.4103/rpe.RPE_36_16

  • Moody KJ, Hutcheon ID, Grant PM (2014) Nuclear forensic analysis, 2nd edn. CRC Press. https://doi.org/10.1201/b17863

  • Morgenstern A, Apostolidis C, Mayer K (2002) Age determination of highly enriched uranium: separation and analysis of 231Pa. Anal Chem 74(21):5513–5516. https://doi.org/10.1021/ac0203948

  • Murakami T, Sato T, Ohnuki T, Isobe H (2005) Field evidence for uranium nanocrystallization and its implications for uranium transport. Chem Geol 221(1–2):117–126. https://doi.org/10.1016/j.chemgeo.2005.04.004

  • Neacsu E (2020) Quality assurance of analytical measurements—a vital element in safety performance in the nuclear field. Proceedings 55(1):2. https://doi.org/10.3390/proceedings2020055002

  • NIJ (2007) NIJ Standard-0603.01 – Portable X-ray systems for use in bomb identification. December 2007. https://www.ojp.gov/pdffiles1/nij/218586.pdf

  • Nuclear Treaty Initiative (NTI) (2021) The CNS global incidents and trafficking database https://www.nti.org/analysis/resource-collections/the-cns-global-incidents-and-trafficking-database/

  • Pajo L (2001) UO2 fuel pellet impurities, pellet surface roughness and N(18O)/N(16O) ratios, applied to nuclear forensic science. University of Helsinki. http://urn.fi/URN:ISBN:952-10-0122-4

  • Prabhath RK, Sreejith SR, Mishra S, Suman SK, Pillai AKS, Murali S (2022) Application of radio-analytical technique for determination of “Age” of nuclear materials for nuclear forensics. J Radiat Res Appl Sci 15(1):213–218. https://doi.org/10.1016/j.jrras.2022.03.007

  • Richter S, Alonso A, De Bolle W, Wellum R, Taylor PDP (1999) Isotopic “fingerprints” for natural uranium ore samples. Int J Mass Spectrom 193(1):9–14. https://doi.org/10.1016/S1387-3806(99)00102-5

  • Stanley FE, Stalcup AM, Spitz HB (2013) A brief introduction to analytical methods in nuclear forensics. J Radioanal Nucl Chem 295(2):1385–1393. https://doi.org/10.1007/s10967-012-1927-3

  • Steeb JL, Mertz CJ, Finck MR, Engelstad G, Carney KP, Chamberlain DB (2016) Impact of an external radiation field on handheld XRF measurements for nuclear forensics applications. J Radioanal Nucl Chem 307(1):751–760. https://doi.org/10.1007/s10967-015-4105-6

  • Steier P, Bichler M, Fifield LK, Golser R, Kutschera W, Priller A, Quinto F et al (2008) Natural and anthropogenic 236U in environmental samples. Nucl Instrum Methods Phys Res Sect B 266(10):2246–2250. https://doi.org/10.1016/j.nimb.2008.03.002

  • Straub MD, Arnold J, Fessenden J, Kiplinger JL (2020) Recent advances in nuclear forensic chemistry. Anal Chem 93(1):3–22. https://doi.org/10.1021/acs.analchem.0c03571

  • Švedkauskaitė-LeGore J, Rasmussen G, Abousahl S, Van Belle P (2008) Investigation of the sample characteristics needed for the determination of the origin of uranium-bearing materials. J Radioanal Nucl Chem 278(1):201–209. https://doi.org/10.1007/s10967-007-7215-y

  • Tamborini G, Wallenius M, Bildstein O, Pajo L, Betti M (2002) Development of a SIMS method for isotopic measurements in nuclear forensic applications. Microchim Acta 139(1):185–188. https://doi.org/10.1007/s006040200059

  • Teterin YA, Popel AJ, Maslakov KI, Teterin AY, Ivanov KE, Kalmykov SN, Springell R, Scott TB, Farnan I (2016) XPS study of ion irradiated and unirradiated UO2 thin films. Inorg Chem 55(16):8059–8070. https://doi.org/10.1021/acs.inorgchem.6b01184

  • Trautmann N, Passler G, Wendt KDA (2004) Ultratrace analysis and isotope ratio measurements of long-lived radioisotopes by resonance ionization mass spectrometry (RIMS). Anal Bioanal Chem 378(2):348–355. https://doi.org/10.1007/s00216-003-2183-8

  • Tsuji K, Injuk J, Van Grieken R (eds) (2005) X-ray spectrometry: recent technological advances. John Wiley & Sons. ISBN: 978-0-470-02043-2

    Google Scholar 

  • Varga Z, Wallenius M, Mayer K (2010) Origin assessment of uranium ore concentrates based on their rare-earth elemental impurity pattern. Radiochim Acta 98(12):771–778. https://doi.org/10.1524/ract.2010.1777

  • Varga Z, Wallenius M, Mayer K, Meppen M (2011) Analysis of uranium ore concentrates for origin assessment. Proc Radiochem 1(1):27–30. https://doi.org/10.1524/rcpr.2011.0004

  • Venkataraman R, Bronson F, Atrashkevich V, Field M, Young BM (2005) Improved detector response characterization method in ISOCS and LabSOCS. J Radioanal Nucl Chem 264(1):213–219. https://doi.org/10.1007/s10967-005-0696-7

  • Volland J-M (2016) Scanning Electron Microscopy for the Life Sciences H. Schatten (ed.) New York: Cambridge University Press, 2013. 298pp. ISBN: 978-0-521-19599-7. Hardback: US $120. Mar Ecol 37(1):235–235. https://doi.org/10.1111/maec.12222

  • Wallenius M, Mayer K (2000) Age determination of plutonium material in nuclear forensics by thermal ionisation mass spectrometry. Fresenius J Anal Chem 366(3):234–238. https://doi.org/10.1007/s002160050046

  • Wallenius M, Mayer K, Tamborini G, Nicholl A (2003) Investigation of correlations in chemical impurities and isotope ratios for nuclear forensic purposes. Proceedings of an international conference on advances in destructive and non-destructive analysis for environmental monitoring and nuclear forensics, vol. 394, pp. 133–140. International Atomic Energy Agency, Vienna. https://www-pub.iaea.org/MTCD/publications/PDF/Pub1169_web.pdf#page=133

  • West M, Ellis AT, Potts PJ, Streli C, Vanhoof C, Wegrzynek D, Wobrauschek P (2010) Atomic spectrometry update–X-ray fluorescence spectrometry. J Anal At Spectrom 25(10):1503–1545. https://doi.org/10.1039/C005501H

  • Williams RW, Gaffney AM (2011) 230Th-234U model ages of some uranium standard reference materials. Proc Radiochem 1(1):31–35. https://doi.org/10.1524/rcpr.2011.0005

  • Zolotoyabko E (2014) Basic concepts of X-ray diffraction. John Wiley & Sons. ISBN: 978-3-527-33561-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mishra .

Editor information

Editors and Affiliations

Section Editor information

Annexure A

Annexure A

A list abbreviations and acronyms used in the chapter (arranged alphabetically)

μ-Raman:

Micro Raman Spectroscopy

μ-XRF:

Micro X-ray Fluorescence

AMS:

Accelerated Mass Spectrometry

AS:

Alpha Spectrometry

ASCLD:

The American Society of Crime Laboratory Directors

ASTM:

American Society for Testing and Materials

AWCC:

Active Well Coincidence Counters

CRM:

Certified Reference Material

DDA:

Differential Die-Away Technique

FTIR:

Fourier Transform Infrared Spectrometry

FT-TIMS:

Fission Track Thermal Ionization Mass Spectrometry

GC-MS:

Gas Chromatograph-Mass Spectrometer

HEU:

Highly Enriched Uranium

HPGe:

High Purity Germanium (HPGe) Detector

HRGS:

High Resolution Gamma Spectrometer

IAEA:

International Atomic Energy Agency

IC:

Ion Chromatograph

ICPMS:

Inductively Coupled Plasma Mass Spectrometry

ICP-OES:

Inductive Coupled Plasma Optical Emission Spectrometry

ICP-SFMS:

Inductively Coupled Plasma Sector Field Mass Spectrometer

IDMS:

Isotope Dilution Mass Spectrometer

IRMM:

Institute For Reference Materials and Measurements

IRMS:

Isotope Resolution Mass Spectrometry

ISO:

International Standards Organization

ITDB:

Incident and Trafficking Database

ITWG:

International Technical Working Group (Nuclear Forensics)

Kev:

Kilo Electron Volt (A unit of energy)

LA:

Laser Ablation

LEU:

Low Enriched Uranium

LSC:

Liquid Scintillation Counting

MC-ICPMS:

Multi Collector Inductively Coupled Plasma Mass Spectrometry

MC-ICPMS:

Multi-Collector Inductively Coupled Plasma Sector Field Mass Spectrometer

MeV:

Mega Electron Volt (A unit of energy)

Ms:

Mass Spectrometer

NAA:

Neutron Activation Analysis

NBS:

National Bureau of Standards, USA

NDA:

Non-Destructive Assay

NF:

Nuclear Forensics

NIST:

National Institute of Science and Technology, USA

NRF:

Nuclear Resonance Fluorescence

PIPS:

Passivated Implanted Planar Silicon Detector

QA:

Quality Assurance

QC:

Quality Control

R&D:

Research and Development

RDD:

Radiological Dispersion Device

REE:

Rare Earth Element

RIMS:

Resonance Ionization Mass Spectrometry

SEM-EDS:

Scanning Electron Microscope with Energy Dispersive Sensor

SIMS:

Secondary Ionization Mass Spectrometry

SNM:

Special Nuclear Material

SPC:

Statistical Process Control

SRM:

Standard Reference Material

TEM:

Transmission Electron Microscopy

TIMS:

Thermal Ionization Mass Spectrometry

UOC:

Uranium Ore Concentrate

XAS:

X-Ray Absorption Spectroscopy

XRD:

X-Ray Diffraction

XRF:

X-Ray Fluorescence

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mishra, S., Anilkumar, S., Vinod Kumar, A. (2023). Nuclear Forensics: Role of Radiation Metrology. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2074-7_134

Download citation

Publish with us

Policies and ethics