Skip to main content

Recent Advancements in AI-Assisted Drug Design and Discovery Systems

  • Chapter
  • First Online:
Industry 4.0 and Healthcare

Abstract

Pharmaceutical companies and chemical experts invest much in drug design and development research. Low effectiveness, off-target delivery, higher costs, and time intake present barriers and constraints to drug design and development. Furthermore, complicated and extensive data sets generated from genomes, proteomics, microarray data, and clinical trials obstruct drug development as recorded data are tough to analyze and model. Artificial intelligence (AI) has been widely applied in drug research and has contributed significantly to its design and development. Deep learning, a subdomain of AI, has revolutionized the field of drug discovery, especially for peptide synthesis, toxicity prediction, drug repositioning, etc. In this chapter, numerous application areas have been identified where existing AI technologies have the potential to speed up drug design research work. Recent progress in the AI field has opened new horizons for drug discovery research. This chapter discusses the current approaches, technological obstacles, and limitations with the goal of probable future avenues for AI-aided drug development and discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eppe M., Nguyen, P.D., Wermter, S.: From semantics to execution: Integrating action planning with reinforcement learning for robotic causal problem-solving. Front. Robot. AI 6(123), (2019)

    Google Scholar 

  2. Hamet, P., Tremblay, J.: Artificial intelligence in medicine. Metabolism 69, S36–S40 (2017)

    Article  Google Scholar 

  3. Duch, W., Swaminathan, K., Meller, J.: Artificial intelligence approaches for rational drug design and discovery. Curr. Pharm. Des. 13(14), 1497–1508 (2007)

    Article  Google Scholar 

  4. Fukushima, K.: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  MATH  Google Scholar 

  5. Kim, S., Chen, J., Cheng, T., Gindulyte., A., He, J., He, S., Bolton, E.E.: PubChem in 2021: new data content and improved web interfaces. Nucl. Acids Res. 49, 1388–1395 (2021)

    Google Scholar 

  6. Baldi, A.: Computational approaches for drug design and discovery: an overview. Syst. Rev. Pharm. 1(1), 99 (2010)

    Article  Google Scholar 

  7. Kalaiarasi, C., Manjula, S., Kumaradhas, P.: Combined quantum mechanics/molecular mechanics (QM/MM) methods to understand the charge density distribution of estrogens in the active site of estrogen receptors. RSC Adv. 9(69), 40758–40771 (2019)

    Article  Google Scholar 

  8. Carpenter, K.A., Huang, X.: Machine learning-based virtual screening and its applications to Alzheimer’s drug discovery: a review. Curr. Pharm. Des. 24(28), 3347–3358 (2018)

    Article  Google Scholar 

  9. Provenzano, C., Cappella, M., Valaperta, R., Cardani, R., Meola, G., Martelli, F., Falcone, G.: CRISPR/Cas9-mediated deletion of CTG expansions recovers normal phenotype in myogenic cells derived from myotonic dystrophy 1 patients. Molecular Therapy-Nucleic Acids 9, 337–348 (2017)

    Article  Google Scholar 

  10. Mustapha, I.B., Saeed, F.: Bioactive molecule prediction using extreme gradient boosting. Molecules 21(8), 983 (2016)

    Google Scholar 

  11. Drouin, A., Letarte, G., Raymond, F., Marchand, M., Corbeil, J., Laviolette, F.: Interpretable genotype-to-phenotype classifiers with performance guarantees. Sci. Rep. 9(1), 4071 (2019). https://doi.org/10.1038/s41598-019-40561-2

    Article  Google Scholar 

  12. Ramon, E., Belanche-Muñoz, L., Pérez-Enciso, M.: HIV drug resistance prediction with weighted categorical kernel functions. BMC Bioinform. 20(1), 1–13 (2019)

    Article  Google Scholar 

  13. Chen, M.L., et al.: Beyond multidrug resistance: leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction. EBioMedicine 43, 356–369 (2019). https://doi.org/10.1016/j.ebiom.2019.04.016

    Article  Google Scholar 

  14. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016).

    Google Scholar 

  15. Rishishwar, L., Petit, R.A., Kraft, C.S., Jordan, I.K.: Genome sequence-based discriminator for vancomycin-intermediate Staphylococcus aureus. J. Bacteriol. 196(5), 940–948 (2014). https://doi.org/10.1128/JB.01410-13

    Article  Google Scholar 

  16. Coelho, J.R., et al.: The use of machine learning methodologies to analyse antibiotic and biocide susceptibility in Staphylococcus aureus. PLoS ONE 8(2), e55582 (2013). https://doi.org/10.1371/journal.pone.0055582

    Article  Google Scholar 

  17. Goodman, K.E., Lessler, J., Harris, A.D., Milstone, A.M., Tamma, P.D.: A methodological comparison of risk scores versus decision trees for predicting drug-resistant infections: a case study using extended-spectrum beta-lactamase (ESBL) bacteremia. Infect. Control Hosp. Epidemiol. 40(4), 400–407 (2019). https://doi.org/10.1017/ice.2019.17

    Article  Google Scholar 

  18. Raposo, L.M., Arruda, M.B., de Brindeiro, R.M., Nobre, F.F.: Lopinavir resistance classification with imbalanced data using probabilistic neural networks. J. Med. Syst. 40(3), 69 (2016). https://doi.org/10.1007/s10916-015-0428-7

    Article  Google Scholar 

  19. Bhattacharyya, R.P., et al.: Simultaneous detection of genotype and phenotype enables rapid and accurate antibiotic susceptibility determination. Nat. Med. 25(12), 1858–1864 (2019). https://doi.org/10.1038/s41591-019-0650-9

    Article  Google Scholar 

  20. Sauer, C.M., et al.: Feature selection and prediction of treatment failure in tuberculosis. PLoS ONE 13(11), e0207491 (2018). https://doi.org/10.1371/journal.pone.0207491

    Article  Google Scholar 

  21. Wicht, K.J., Combrinck, J.M., Smith, P.J., Egan, T.J.: Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity. Bioorg. Med. Chem. 23(16), 5210–5217 (2015)

    Article  Google Scholar 

  22. Rogers, D., Brown, R.D., Hahn, M.: Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J. Biomol. Screen. 10(7), 682–686 (2005)

    Article  Google Scholar 

  23. Speck-Planche, A.V., Kleandrova, V., Luan, F., Cordeiro, N.D.: Chemoinformatics in multi-target drug discovery for anti-cancer therapy: in silico design of potent and versatile anti-brain tumor agents. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 12(6), 678 (2012).

    Google Scholar 

  24. Xia, X., Maliski, E.G., Gallant, P., Rogers, D.: Classification of kinase inhibitors using a Bayesian model. J. Med. Chem. 47(18), 4463–4470 (2014)

    Article  Google Scholar 

  25. Ouyang, X., Handoko, S.D., Kwoh, C.K.: Cscore: a simple yet effective scoring function for protein–ligand binding affinity prediction using modified cmac learning architecture. J. Bioinform. Comput. Biol. 9(1), 1–14 (2011)

    Article  Google Scholar 

  26. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. Adv. Neural Inf. Process. Syst., 28 (2015).

    Google Scholar 

  27. Liu, B., Ramsundar, B., Kawthekar, P., Shi, J., Gomes, J., LuuNguyen, Q., Pande, V.: Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS Cent. Sci. 3(10), 1103–1113 (2017)

    Article  Google Scholar 

  28. Schneider, G., Clark, D.E.: Automated de novo drug design: are we nearly there yet. Angew. Chem. Int. Ed. 58(32), 10792–10803 (2019)

    Article  Google Scholar 

  29. Asanuma, D., Sakabe, M., Kamiya, M., Yamamoto, K., Hiratake, J., Ogawa, M., Urano, Y.: Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo. Nat. Commun. 6(1), 1–7 (2015)

    Article  Google Scholar 

  30. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-rnn: Deep learning on Spatio-temporal graphs. In Proceedings of the ieee conference on computer vision and pattern recognition, 5308–5317(2016)

    Google Scholar 

  31. Sanchez-Lengeling, B., Aspuru-Guzik, A.: Inverse molecular design using machine learning: Generative models for matter engineering. Science 361(6400), 360–365 (2018)

    Article  Google Scholar 

  32. Sellers, B.D., James, N.C., Gobbi, A.: A comparison of quantum and molecular mechanical methods to estimate strain energy in druglike fragments. J. Chem. Inf. Model. 57(6), 1265–1275 (2017)

    Article  Google Scholar 

  33. Popova, M., Isayev, O., Tropsha, A.: Deep reinforcement learning for de novo drug design. Sci. Adv. 4(7), 7885 (2018)

    Article  Google Scholar 

  34. Segler, M.H., Preuss, M., Waller, M.P.: Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555(7698), 604–610 (2018)

    Article  Google Scholar 

  35. Li, L., Snyder, J.C., Pelaschier, I.M., Huang, J., Niranjan, U.N., Duncan. P., Burke, K. Understanding machine‐learned density functionals. Int. J. Quantum Chem. 116(11), 819–833 (2016).

    Google Scholar 

  36. Pilania, A., Mannodi-Kanakkithodi, B.P., Uberuaga, R., Ramprasad, J.E., Gubernatis, Lookman, T.: Machine learning bandgaps of double perovskites. Sci. Rep. 6, 19375 (2016).

    Google Scholar 

  37. Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B., et al.: Machine learning bandgaps of double perovskites. Sci. Rep. 6, 19375 (2016)

    Article  Google Scholar 

  38. Margolis, R., Derr, L., Dunn, M., Huerta, M., Larkin, J., Sheehan. J,, Green, E.D.: The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J. Am. Med. Inform. Assoc. 21(6), 957–958 (2014).

    Google Scholar 

  39. Parmar, C., Barry, J.D., Hosny, A., Quackenbush, J., Aerts, H.J.: Data analysis strategies in medical imagingData science designs in medical imaging. Clin. Cancer Res. 24(15), 3492–3499 (2018)

    Article  Google Scholar 

  40. Cohen, J.D., Li, L., Wang, Y., Thoburn, C., Afsari, B., Danilova, L., Papadopoulos, N.: Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359(6378), 926–930 (2018)

    Article  Google Scholar 

  41. Wang, H.-Y., et al.: Rapid Detection of Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Based on Matrix-Assisted Laser Desorption Ionization Time-of-Flight: Using a Machine Learning Approach and Unbiased Validation. Front. Microbiol. 9, 2393 (2018). https://doi.org/10.3389/fmicb.2018.02393

    Article  Google Scholar 

  42. Huang, T.-S., Lee, S.S.-J., Lee, C.-C., Chang, F.-C.: Detection of carbapenem-resistant Klebsiella pneumoniae on the basis of matrix-assisted laser desorption ionization time-offlight mass spectrometry by using supervised machine learning approach. PLoS ONE 15(2), e0228459 (2020). https://doi.org/10.1371/journal.pone.0228459

    Article  Google Scholar 

  43. Zhang, C., et al.: Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae. Brief. Bioinform. 21(4), 1347–1355 (2020). https://doi.org/10.1093/bib/bbz056

    Article  Google Scholar 

  44. Moradigaravand, D., Palm, M., Farewell, A., Mustonen, V., Warringer, J., Parts, L.: Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLoS Comput. Biol. 14(12), e1006258 (2018). https://doi.org/10.1371/journal.pcbi.1006258

    Article  Google Scholar 

  45. Feretzakis, G., et al.: Using machine learning techniques to aid empirical antibiotic therapy decisions in the intensive care unit of a general hospital in Greece. Antibiot. Basel Switz. 9(2) (2020). https://doi.org/10.3390/antibiotics9020050.

  46. Haga, H., et al.: A machine learning-based treatment prediction model using whole genome variants of hepatitis C virus. PLoS ONE 15(11), e0242028 (2020). https://doi.org/10.1371/journal.pone.0242028

    Article  Google Scholar 

  47. Oonsivilai, M., et al.: Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a children’s hospital in Cambodia. Wellcome Open Res. 3, 131 (2018). https://doi.org/10.12688/wellcomeopenres.14847.1

    Article  Google Scholar 

  48. Macesic, N.N., Bear Don’t Walk, O.J., Pe’er, I., Tatonetti, N.P., Peleg, A.Y., Uhlemann, A.-C.: Predicting phenotypic Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data. mSystems 5(3) (2020). https://doi.org/10.1128/mSystems.00656-19

  49. Kouchaki, S., et al.: Application of machine learning techniques to tuberculosis drug resistance analysis. Bioinforma. Oxf. Engl. 35(13), 2276–2282 (2019). https://doi.org/10.1093/bioinformatics/bty949

  50. Mason, D.J., et al.: Prediction of Antibiotic Interactions Using Descriptors Derived from Molecular Structure. J. Med. Chem. 60(9), 3902–3912 (2017). https://doi.org/10.1021/acs.jmedchem.7b00204

  51. Gupta, R., Srivastava, D., Sahu, M., et al.: Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 25, 1315–1360 (2021). https://doi.org/10.1007/s11030-021-10217-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Tewari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayan, K., Paswan, K.K., Sharma, V.B., Kumar, Y., Tewari, S. (2023). Recent Advancements in AI-Assisted Drug Design and Discovery Systems. In: Mishra, A., Lin, J.CW. (eds) Industry 4.0 and Healthcare . Advanced Technologies and Societal Change. Springer, Singapore. https://doi.org/10.1007/978-981-99-1949-9_2

Download citation

Publish with us

Policies and ethics