Skip to main content

Genetic and Genomic Resources of Range Grasses: Status and Future Prospects

  • Chapter
  • First Online:
Molecular Interventions for Developing Climate-Smart Crops: A Forage Perspective

Abstract

This paper describes the current scenario of the genetic and genomic resources of the range grasses. The majority of world’s rangeland, which make up over 36% of the earth’s surface, are dominated by grasses and they are important as feed sources and pastures for livestock. Due to land-use change together with pressures from a changing climate there have been rapid rates of genetic erosion of forage diversity in general and range grasses in particular. Although the conventional tropical fodder grass (TFS) breeding has been effective in releasing well-adapted and high-yielding cultivars over the past several decades, the genetic benefits from these efforts have been modest given the rising demand in the world. Genomic selection (GS) is an important tool that enables to improve complex traits by capturing both major small effect QTLs with high density genome-wide marker coverage. Genomic selection increases the genetic gain per selection, thus enhancing efficiency of breeding programs. This review highlights the information about the important range grasses with regard to their significance, genetic resources, breeding methods to increase quality and nutritional value, and development of genomic resources, linkage maps, and molecular markers closely associated with desirable forage breeding traits for use in marker-assisted selection, as well as their conservation and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi S, Dwivedi A, Kumar S, Bhat V (2019) Development of EST-SSR markers in Cenchrus ciliaris and their applicability in studying the genetic diversity and cross-species transferability. J Genet 98(4):101

    Article  PubMed  Google Scholar 

  • Adams RP (2000) DNA analysis of the genetic diversity of vetiver and future selections for use in erosion control. In: Second International Conference on Vetiver-ICV2, Thailand

    Google Scholar 

  • Adams RP, Daffornli MR (1999) DNA fingerprints of the pantropical grass. AUJT 2(4):173–180

    Google Scholar 

  • Adams RP, Turuspekov MZY, Dafforn M, Veldkamp J (1998) DNA fingerprinting reveals clonal nature of Vetiveria zizanioides (L.) Nash Gramineae and sources of potential new germplasm. Mol Ecol 7(7):813–818

    Article  Google Scholar 

  • Ambiel AC, Guaberto LM, Vanderlei TM, Machado Neto NB (2008) RAPD grouping of accesses and cultivars of three Brachiaria species. Acta Sci Agron 30(4):457–464

    CAS  Google Scholar 

  • ASARECA (2007) Rationalisation and Harmonisation of Seed Policies and Regulations in Eastern and Central Africa. ASARECA Technology Uptake and Up-scaling Support Initiative (TUUSI)

    Google Scholar 

  • Bashaw EC (1962) Apomixis and sexuality in buffel grass. Crop Sci 2:412–415

    Article  Google Scholar 

  • Bishoyi AK, Sharma A, Kavane A, Geetha KA (2016) Varietal discrimination and genetic variability analysis of Cymbopogon using RAPD and ISSR markers analysis. Appl Biochem Biotechnol 179(4):659–670

    Article  CAS  PubMed  Google Scholar 

  • Bluma-Marques AC, Chiar L, Agnes DC, Jank L, Pagliarini MS (2014) Molecular markers linked to apomixis in Panicum maximum Jacq. Afr J Biotechnol 13(22):2198

    Article  CAS  Google Scholar 

  • Boschma SP, Lodge GM, Harden S (2010) Seedling competition of lucerne in mixtures with temperate and tropical pasture species. Crop Pasture Sci 61:411–419

    Article  Google Scholar 

  • Burson BL, Actkinson JM, Hussey MA, Jessup RW (2012) Ploidy determination of buffel grass accessions in the USDA National Plant Germplasm System collection by flow cytometry. S Afr J Bot 79:91–95

    Article  Google Scholar 

  • Burton GW (1989) Registration of ‘Tifton 9’ Pensacola bahiagrass. Crop Sci 29:1326

    Article  Google Scholar 

  • Burton GW, Gates RN, Hill GM (1993) Registration of ‘Tifton 85’ Bermuda grass. Crop Sci 33:644

    Article  Google Scholar 

  • Busey P (1989) Progress and benefits to humanity from breeding warm-season grasses for turf. In: Sleper DA, Asay KH, Pedersen JF (eds) Contributions from breeding forage and turf grasses, CSSA Special Publication no. 15. Crop Science Society of America, Wisconsin, pp 49–70

    Google Scholar 

  • Carino DA, Daehler CC (1999) Genetic variation in an apomictic grass, Heteropogon contortus, in the Hawaiian Islands. Mol Ecol 8(12):2127–2132

    Article  CAS  PubMed  Google Scholar 

  • Carlier L, Rotar I, Vlahova M, Vidican R (2009) Importance and functions of grasslands. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37:25–30

    Google Scholar 

  • Celestino RDS, Zucchi MI, Pinheiro JB, Campos JBD, Pereira AA, Bianchini FG, Blank AF (2015) Molecular and chemical characterization of vetiver, Chrysopogon zizanioides (L.) Roberty, germplasm. Genet Mol Res 14:3

    Article  Google Scholar 

  • Chandra A, Dubey A (2007) Transferability of STS markers for studying the genetic diversity within the genus Cenchrus (Poaceae). Curr Sci 92:961–967

    CAS  Google Scholar 

  • Chandra A, Dubey A (2008) Evaluation of genus Cenchrus based on malondialdehyde, proline content, specific leaf area and carbon isotope discrimination for drought tolerance and divergence of species. Acta Physiol Plant 30:53–61

    Article  CAS  Google Scholar 

  • Chandra A, Tiwari KK (2010) Isolation and characterization of microsatellite markers from guinea grass (Panicum maximum) for genetic diversity estimate and cross-species amplification. Plant Breed 129(1):120–124

    Article  CAS  Google Scholar 

  • Chandra A, Saxena R, Roy AK, Pathak PS (2004) Estimation of genetic variation in Dichanthium annulatum genotypes by RAPD technique. Trop Grassl 38:245–252

    Google Scholar 

  • Chandra A, Saxena R, Roy AK (2006) Polymorphism and genotype-specific markers for Dichanthium identified by random amplified polymorphic DNA. Genet Resour Crop Evol 53(7):1521–1529

    Article  CAS  Google Scholar 

  • Chandra A, Jain R, Solomon S, Shrivastava S, Roy AK (2013) Exploiting EST databases for the development and characterisation of 3425 gene-tagged CISP markers in biofuel crop sugarcane and their transferability in cereals and orphan tropical grasses. BMC Res Notes 6(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cidade FW, Dall Agnol M, Bered F, de Souza-Chies TT (2008) Genetic diversity of the complex Paspalum notatum Flügge (Paniceae: Panicoideae). Genet Resour Crop Evol 55(2):235–246

    Article  CAS  Google Scholar 

  • Cidade FW, Vigna BB, De Souza FH, Valls JFM, Dall Agnol M, Zucchi MI, Souza AP (2013) Genetic variation in polyploid forage grass: assessing the molecular genetic variability in the Paspalum genus. BMC Genet 14(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  • Combes D, Pernes J (1970) Variations in chromosome numbers in Panicum maximum Jacq. in relation to method of reproduction. Acad Sci Paris C R Ser D 270:782–785

    Google Scholar 

  • Dabadghao PM, Shankarnarayan KA (1973) The Grass Cover of India. ICAR, New Delhi

    Google Scholar 

  • Datta D (2013) Indian fodder management towards 2030: a case of vision or myopia. Int J Manag Social Sci Res 2(2):33–41

    Google Scholar 

  • Daurelio LD, Espinoza F, Quarin CL, Pessino SC (2004) Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Plant Syst Evol 244(3–4):189–199

    Article  CAS  Google Scholar 

  • Davis AP, Govaerts R, Bridson DM, Ruhsam M, Moat J, Brummitt NA (2009) A global assessment of distribution, diversity, endemism, and taxonomic effort in the Rubiaceae. Ann Mo Bot Gard 96(1):68–78

    Article  Google Scholar 

  • Deo TG, Ferreira RC, Lara LA, Moraes AC, Alves-Pereira A, de Oliveira FA, Souza AP (2019) High-resolution linkage map with allele dosage allows the identification of an apomixis region and complex traits in guinea grass Megathyrsus maximus. BioRxiv 801399.

    Google Scholar 

  • Dhawana SS, Gupta P, Mishra A, Kumar SS, Chauhan HS (2018) Genetic differentiation within Vetiveria zizanioides: Selection and breeding of commercial perfumery grass Vetiver. J Herb Spices Med Plants 24(4):323–331

    Article  Google Scholar 

  • Dhyani SK, Palsaniya DR, Tewari RK, Chaturvedi OP (2010) Sustainable agroforestry production through contingency planning for aberrant weather in Bundelkhand region of Central India. Indian J Agroforest 12(2):1–5

    Google Scholar 

  • Dong Z, Xie X, Lu X, Guo H, Sun X (2003) Study on the genetic diversity of Vetiver grass (Vetiveria zizanioides). In: Proceedings of the Third International Conference on Vetiver and Exhibition. The Chinese Academy of Sciences, Guangzhou, pp 524–531

    Google Scholar 

  • Dwivedi KK, Bhat SR, Bhat V, Bhat BV, Gupta MG (2007) Identification of a SCAR marker linked to apomixis in buffelgrass Cenchrus ciliaris (L.). Plant Sci 172(4):788–795

    Article  CAS  Google Scholar 

  • Ebina M, Nakagawa H (2001) RAPD analysis of apomictic and sexual lines in guinea grass Panicum maximum (Jacq.). Jpn J Grassl Sci 47:251–255

    CAS  Google Scholar 

  • Ebina M, Nakagawa H, Yamamoto T, Araya H, Tsuruta S, Takahara M, Nakajima K (2005) Co-segregation of AFLP and RAPD markers to apospory in guineagrass Panicum maximum (Jacq.). Grassl Sci 51:71–78

    Article  CAS  Google Scholar 

  • Ebina M, Kouki K, Tsuruta S, Akashi R, Yamamoto T, Takahara M, Inafuku M, Okumura K, Nakagawa NH (2007) Genetic relationship estimation in guineagrass Panicum maximum (Jacq.) assessed on the basis of simple sequence repeat markers. Grassl Sci 53:115–164

    Article  Google Scholar 

  • Espinoza F, Daurelio LD, Pessino SC, Valle EM, Quarin CL (2006) Genetic characterization of Paspalum notatum accessions by AFLP markers. Plant Syst Evol 258(3–4):147–159

    Article  CAS  Google Scholar 

  • Ferreira RC, Cançado LJ, do Valle CB, Chiari L, de Souza AP (2016) Microsatellite loci for Urochloa decumbens (Stapf.) RD Webster and cross-amplification in other Urochloa species. BMC Res Notes 9(1):152

    Article  PubMed  PubMed Central  Google Scholar 

  • France J, Theodorou M, Lowman R, Beever D (2000) Feed evaluation for animal production. Feeding systems and feed evaluation models. CABI, Wallingford, pp 12–20

    Google Scholar 

  • Geetha R (2001) Studies on seed production, processing, dormancy and storage in blue buffel (Cenchrus glaucus) ev. Co 1. Doctoral thesis submitted to Department of seed science and technology. Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Griffa S (2010) Caracterizaciónbioquímica y molecular de germoplasma, evaluación de la tolerancia a la salinidad y obtención de híbridosenbuffel grass. Tesis Doctoral Universidad Nacional de Córdoba, Córdoba, Argentina, p 137

    Google Scholar 

  • Griffa S, Ribotta A, Muñoz N, López Colomba E, Ojeda M, Luna C, Grunberg K, Díaz D, Biderbost E (2005) Análisis de la herencia de caracteres de interésagronómicoen Cenchrus ciliaris (L.). In: XXXIV Congreso Argentino de Genética. Trelew, Chubut, Argentina, p 150

    Google Scholar 

  • Gupta S, Kumari K, Das J, Lata C, Puranik S, Prasad M (2011) Development and utilization of novel intron length polymorphic markers in foxtail millet Setaria italica (L.) P. Beauv. Genome 54(7):586–602

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Kumari K, Sahu PP, Vidapu S, Prasad M (2012) Sequence-based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet Setaria italica (L.). Plant Cell Rep 31(2):323–337

    Article  CAS  PubMed  Google Scholar 

  • Gustine DL, Sherwood RT, Gounaris Y, Huff D (1996) Isozyme, protein, and markers within a half-sib family of buffel grass. Crop Sci 36:723–727

    Article  CAS  Google Scholar 

  • Gustine DL, Sherwood RT, Huff DR (1997) Apospory-linked molecular markers in buffelgrass. Crop Sci 37(3):947–951

    Article  CAS  Google Scholar 

  • Gutierrez-Ozuna R, Eguiarte LE, Molina-Freaner F (2009) Genotypic diversity among pasture and roadside populations of the invasive buffel grass Pennisetum ciliare (L.) in north-western Mexico. J Arid Environ 73(1):26–32

    Article  Google Scholar 

  • Hacker JB, Jank L (1998) Breeding tropical and subtropical forage plants. In: Cherney JH, Cherney DJR (eds) Grass for dairy cattle. CABI, Wallingford, pp 49–71

    Google Scholar 

  • Hanna WW, Pawell JB, Millot JC, Burton GW (1973) Cytology of obligate sexual plants in Panicum maximum Jacq. and their use in controlled hybrids. Crop Sci 13:695–697

    Article  Google Scholar 

  • Harty RL, Hopkinson JM, English BH, Alder J (1983) Germination, dormancy and longevity in stored seeds of Panicum maximum. Seed Sci Technol 11:341–351

    Google Scholar 

  • Huang LK, Bughrara SS, Zhang XQ, Bales-Arcelo CJ, Bin X (2011) Genetic diversity of switchgrass and its relative species in Panicum genus using molecular markers. Biochem Syst Ecol 39(4–6):685–693

    Article  CAS  Google Scholar 

  • Hussey MA, Bashaw EC, Hignight KW, Wipff J, Hatch SL (1993) Fertilization of unreduced female gametes: a technique for genetic enhancement within the Cenchrus–Pennisetum agamic complex. In: Baker MJ et al (eds) Proceedings of the International Grassland Congress, 17th, Palmerston North, New Zealand, pp 404–405

    Google Scholar 

  • ICAR (2009) Handbook of agriculture, 6th, revised edn. ICAR, New Delhi

    Google Scholar 

  • IGFRI (2015) Annual report 2014–15. ICAR-Indian Grassland and Fodder Research Institute, Jhansi, p 150

    Google Scholar 

  • IGFRI Vision (2050) Indian Grassland and Fodder Research Institute, Jhansi, UP

    Google Scholar 

  • Jank L, Do Valle CB, De Carvalho J, Calixto S (2001) Evaluation of guinea grass Panicum maximum (Jacq.) hybrids in Brazil. In: Proceedings of the XIX International Grassland Congress, Piracicaba, Brazil, pp 498–499

    Google Scholar 

  • Jank L, Resende RMS, Calixto S, Gontijo Neto MM, Laura VA, Macedo MCM, Do Valle CB (2004) Preliminary performance of Panicum maximum accessions and hybrids in Brazil. In: Proceedings of the XX International Grassland Congress, Dublin

    Google Scholar 

  • Jessup RW, Burson BL, Burow GB, Wang YW (2003) Segmental allotetraploidy and allelic interactions in buffel grass Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris (L.) as revealed by genome mapping. Genome 46:304–313

    Article  CAS  PubMed  Google Scholar 

  • Jungmann L, Sousa ACB, Paiva J, Francisco PM, Vigna BBZ, Do Valle CB, de Souza AP (2009) Isolation and characterization of microsatellite markers for Brachiaria brizantha (Hochst. ex A. Rich.) Stap. Consev Genet 10(6):1873

    Article  CAS  Google Scholar 

  • Karthikeyan S (2005) Common tropical and sub tropical sedges and grasses: an illustrated account: review. Rheedea 15(2):141–142

    Google Scholar 

  • Kaul M, Mohren G, Dadhwal V (2010) Carbon storage and sequestration potential of selected tree species in India. Mitig Adapt Strat Glob Chang 15(5):489–510

    Article  Google Scholar 

  • Kellogg EA (2015) Flowering plants. Monocots: Poaceae. In: The families and genera of vascular plants. Springer International, Berlin, pp 1–416

    Google Scholar 

  • Khanuja SP, Shasany AK, Pawar A, Lal RK, Darokar MP, Naqvi AA, Kumar S (2005) Essential oil constituents and RAPD markers to establish species relationship in Cymbopogon Spring (Poaceae). Biochem Syst Ecol 33(2):171–186

    Article  CAS  Google Scholar 

  • Kharrat-Souissi A, Baumel A, Torr F, Juin M, Siljak-Yakovlev S, Roig A, Chaieb M (2011) New insights into the polyploid complex Cenchrus ciliaris (L.) show its capacity for gene flow and recombination processes despite its apomictic nature. Aust J Bot 59(6):543–553

    Article  Google Scholar 

  • Kilian B, Ozkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W (2007) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol 24(12):2657–2668

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Saxena S (2016) Sequence characterized amplified regions linked with apomictic mode of reproduction in four different apomictic Cenchrus species. Mol Plant Breed 7

    Google Scholar 

  • Kumar J, Verma V, Qazi GN, Gupta PK (2007) Genetic diversity in Cymbopogon species using PCR-based functional markers. J Plant Biochem Biotechnol 16(2):119–122

    Article  CAS  Google Scholar 

  • Kumar J, Verma V, Goyal A, Shahi AK, Sparoo R, Sangwan R, Qazi GN (2009) Genetic diversity analysis in Cymbopogon species using DNA markers. Plant Omics 2(1):20

    CAS  Google Scholar 

  • Kumar S, Chandra A, Gupta MG, Shukla GP (2010) SCAR marker linked to sexuality in Cenchrus ciliaris (L.). Range Manag Agrofor 31:149–150

    Google Scholar 

  • Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, Prasad M (2013) Development of eSSR-markers in Setaria italica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PloS One 8(6):e67742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanza Castelli S, Grunberg K, Muñoz N, Griffa S, López Colomba E, Ribotta A, Biderbost E, Luna C (2010) Oxidative damage and antioxidant defenses as potential indicators of salt-tolerant Cenchrus ciliaris (L.) genotypes. Flora 205:622–626

    Article  Google Scholar 

  • Lara LADC, Santos MF, Jank L, Chiar L, Vilela MDM, Amadeu RR, Garcia AA (2019) Genomic selection with allele dosage in Panicum maximum Jacq. G3 Genes Genom Genet 9(8):2463–2475

    CAS  Google Scholar 

  • Lubbers EL, Arthur L, Hanna WW, Ozias-Akins P (1994) Molecular markers shared by diverse apomictic Pennisetum species. Theor Appl Genet 89(5):636–642

    Article  CAS  PubMed  Google Scholar 

  • Lutts S, Ndikumana J, Louant BP (1994) Male and female sporogenesis and gametogenesis in apomictic Brachiaria brizantha, Brachiaria decumbens and F1 hybrids with sexual colchicines induced tetraploid Brachiaria ruziziensis. Euphytica 78:19–25

    Article  Google Scholar 

  • Martínez EJ, Hopp HE, Stein J, Ortiz JP, Quarin CL (2003) Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Mol Breed 12(4):319–327

    Article  Google Scholar 

  • Miles JW (2007) Apomixis for cultivar development in tropical forage grasses. Crop Sci 239:47

    Google Scholar 

  • Mnene WNE, Kirwa BK, Kidake BP, Ogillo D, Kimitei R (2017) Manual on how to produce good quality range grass seed. Kenya Agricultural & Livestock Research Organization Arid and Range Lands Research Institute (ARLRI), Makindu, Kenya

    Google Scholar 

  • Moosikapala L, Te-Chato S (2010) Application of in vitro conservation in Vetiveria zizanioides Nash. J Agric Technol 6(2):401–407

    Google Scholar 

  • Muir J, Jank L (2004) Guinea grass. In: Sollenberger LE, Moser L, Burson B (eds) Warm-season (C4) grasses, Agronomy monograph, vol 45. ASA-CSSA-SSSA, Madison, pp 589–621

    Google Scholar 

  • Nakajima K, Komatsu T, Mochizuki N, Suzuki S (1979) Isolation of diploid and tetraploid sexual plants in guinea grass (Panicum maximum Jacq.). Jpn J Breed 29:228–238

    Article  Google Scholar 

  • Nitthaisong P, Ishigaki G, Tanaka H, Akashi R (2016) Chromosome number, genomic variation, and molecular markers to assess genetic diversity of Brachiaria species. Crop Sci 56(1):312–321

    Article  CAS  Google Scholar 

  • Novo PE, Galdeano F, Valls JF, Honfi AI, Espinoza F, Quarin CL (2016) Interspecific hybrids between Paspalum plicatulum and P. oteroi: a key tool for forage breeding. Sci Agric 73:356–362

    Article  Google Scholar 

  • Ortiz JPA, Pessino SC, Leblanc O, Hayward MD, Quarin CL (1997) Genetic fingerprinting for determining the mode of reproduction in Paspalum notatum, a subtropical apomictic forage grass. Theor Appl Genet 95(5–6):850–856

    Article  CAS  Google Scholar 

  • Ortiz JPA, Pessino SC, Bhat V, Hayward MD, Quarín CL (2001) A genetic linkage map of diploid Paspalum notatum. Crop Sci 41(3):823–830

    Article  CAS  Google Scholar 

  • Palsaniya DR, Dhyani SK, Rai P (2011) Silvipasture in India: present perspectives and challenges ahead. Scientific Publishers, Jodhpur, p 207

    Google Scholar 

  • Pandey G, Misra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet Setaria italica (L.). DNA Res 20(2):197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira AV, Lédo FJS (2008) Melhoramentogenético de Pennisetum purpureum. In: Resende RMS, Valle CB, Jank L (eds) Melhoramento de forrageiras tropicais. Embrapa Gado de Corte, Campo Grande, pp 89–116

    Google Scholar 

  • Pérez H, Bravo S, Ongaro V, Castagnaro A, Garcia Seffino L, Taleisnik E (1999) Chloris gayana cultivars: RAPD polymorphism and field performance under salinity. Grass Forage Sci 54:289–296

    Article  Google Scholar 

  • Pessino SC, Evans C, Ortiz JPA, Armstead I, Valle CBD, Hayward MD (1998) A genetic map of the apospory-region in Brachiaria hybrids: identification of two markers closely associated with the trait. Hereditas 128(2):153–158

    Article  Google Scholar 

  • Peters M, Lascano CE (2003) Forage technology adoption: linking on-station research with participatory methods. Trop Grassl 37:197–203

    Google Scholar 

  • Pinheiro AA, Pozzobon MT, Valle CB, Penteado MIO, Carneiro VTC (2000) Duplication of the chromosome number of diploid Brachiaria brizantha plants using colchicines. Plant Cell Rep 19:274–278

    Article  CAS  PubMed  Google Scholar 

  • Pinkerton B (2005) Forage quality. Clemson University Cooperative Extension Service. Forage fact sheet 2. Cooperative Extension Service, Clemson University

    Google Scholar 

  • Poehlman JM (1987) Breeding field crops, 3rd edn. Springer Science Business Media, LLC, Berlin

    Book  Google Scholar 

  • Prasad MP, Shekhar S (2013) Antimicrobial activity of Cymbopogon species against human pathogens and molecular characterization by RAPD markers. Asian J Biol Life Sci 2(1):13

    Google Scholar 

  • Quiroga M, Grunberg K, Ribotta A, López Colomba E, Carloni E, Tommasino E, Luna C, Griffa S (2013) Obtaining sexual genotypes for breeding in buffel grass. S Afr J Bot 8(118):123

    Google Scholar 

  • Rai P, Palsaniya DR (2015) Silvipasture research and development in India: looking back to move ahead. In: Dhyani SK, Newaj R, Alam B, Dev I (eds) Agroforestry—present status and way forward. Biotech Books, New Delhi, pp 471–486

    Google Scholar 

  • Raja MB, Rajamani K, Suresh J, Joel AJ, Uma D (2019) Molecular characterization of vetiver (Chrysopogon zizanioides Roberty) genotypes using ISSR markers. Med Plants Int J Phytomed Relat Indus 11(3):246–252

    Article  Google Scholar 

  • Randazzo CP, Ferri AM, Paladino LC, Andres AN, Ingala LR (2019) Cross-species transfer of SSR markers in Setaria sphacelata and Trichloris crinita sp. Agronomía Colombiana 37(2):112

    Article  Google Scholar 

  • Ravagnani A, Michael T, Abberton, Skøt L (2012) Development of genomic resources in the species of Trifolium L. and its application in forage legume breeding. Agronomy 2:116–131

    Article  CAS  Google Scholar 

  • Rebozzio RN, Rodríguez MP, Stein J, Ortiz JPA, Quarin CL, Espinoza F (2012) Validation of molecular markers linked to apospory in tetraploid races of bahiagrass, Paspalum notatum Flüggé. Mol Breed 29(1):189–198

    Article  Google Scholar 

  • Resende RMS, Jank L, Do Valle CB, Bonato ALV (2004) Biometrical analysis and selection of tetraploid progenies of Panicum maximum using mixed model method. Pesq Agrop Brasileira 39:335–341

    Article  Google Scholar 

  • Ribotta AN, Griffa SM, Díaz D, Carloni EJ, Colomba EL, Tommasino EA, Grunberg K (2013) Selecting salt-tolerant clones and evaluating genetic variability to obtain parents of new diploid and tetraploid germplasm in Rhodes grass Chloris gayana (K.). S Afr J Bot 84:88–93

    Article  CAS  Google Scholar 

  • Ribotta AN, Lopez Colomba E, Bollati GP, Striker GG, Carloni EJ, Griffa SM, Grunberg KA (2019) Agronomic and molecular characterization of Chloris gayana cultivars and salinity response during germination and early vegetative growth. Trop Grassl 7(1):14–24

    Article  Google Scholar 

  • Roche D, Cong P, Chen Z, Hanna WW, Gustine DL, Sherwood RT, Ozias-Akins P (1999) An apospory-specific genomic region is conserved between Buffel grass (Cenchrus ciliaris L.) and Pennisetum squamulatum (Fresen.). Plant J 19(2):203–208

    Article  CAS  PubMed  Google Scholar 

  • Roy D (1993) Reap more biomass through diversity in forestry. Int Agric 31(5–8):23–26

    Google Scholar 

  • Roy AK, Singh JP (2013) Grasslands in India: problems and perspectives for sustaining livestock and rural livelihoods. Trop Grassl 1:240–243

    Article  Google Scholar 

  • Roy A, Malaviya D, Kaushal P (2019) Genetic improvement of dominant tropical Indian range grasses. Range Manag Agrofor 40:1–25

    Google Scholar 

  • Ruanjaichon V (1997) Use of RAPD for classification and identification of genetic markers in Vetiveria spp. in Thailand. Kasetsart Univ., Bangkok. Graduate School

    Google Scholar 

  • Sahay G, Sevanayak D, Tyagi VC, Bhardwaj N, Shmed S (2018) Tropical and subtropical forage genetic resources of India: their conservation and utilization. In: Forage for future, p 6

    Google Scholar 

  • Sandhu JS, Kumar D, Yadav VK, Singh T, Sah RP, Radhakrishna A (2015) Recent trends in breeding of tropical grass and forage species. In: Vijay D, Srivastava MK, Gupta CK, Malaviya DR, Roy MM, Mahanta SK et al (eds) Proceedings of the 23rd International Grassland Congress. Range Manag Soc India, Jhansi, pp 337–348

    Google Scholar 

  • Saxena R, Chandra A (2006) RAPD and cytological analyses and histological changes caused by moisture stress in Dichanthium annulatum accessions. Cytologia 71(2):197–204

    Article  CAS  Google Scholar 

  • Saxena R, Chandra A (2010) Isozyme, ISSR and RAPD profiling of genotypes in marvel grass (Dichanthium annulatum). J Environ Biol 31(6):883

    CAS  PubMed  Google Scholar 

  • Saxena R, Chandra A (2011) Transferability of STS markers in studying genetic relationships of marvel grass (Dichanthium annulatum). J Environ Biol 32(6):701

    PubMed  Google Scholar 

  • Schut A, Gherardi S, Wood D (2010) Empirical models to quantify the nutritive characteristics of annual pastures in south-west Western Australia. Crop Pasture Sci 61:32–43

    Article  Google Scholar 

  • Sigmon BA, Adams RP, Mower JP (2017) Complete chloroplast genome sequencing of vetiver grass (Chrysopogon zizanioides) identifies markers that distinguish the non-fertile ‘Sunshine’ cultivar from other accessions. Ind Crop Prod 108:629–635

    Article  CAS  Google Scholar 

  • Singh R, Narzary D, Bhardwaj J, Singh AK, Kumar S, Kumar A (2014) Molecular diversity and SSR transferability studies in Vetiver grass Vetiveria zizanioides (L.). Ind Crop Prod 53:187–198

    Article  CAS  Google Scholar 

  • Smith RL (1972) Sexual reproduction in Panicum maximum Jacq. Crop Sci 12:624–627

    Article  Google Scholar 

  • Snyder LA, Hernandez AR, Warmke HE (1955) The mechanism of apomixis in Pennisetum ciliare. Bot Gaz 116:209–221

    Article  Google Scholar 

  • Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barbera P, Gillespie LJ, Zuloaga FO (2017) A worldwide phylogenetic classification of the Poaceae (Gramineae) II: an update and a comparison of two 2015 classifications. J Syst Evol 55(4):259–290

    Article  Google Scholar 

  • Sousa ACB, Jungmann L, Campos TD, Sforça DA, Boaventura LR, Silva GMB, Souza AP (2011) Development of microsatellite markers in Guinea grass (Panicum maximum Jacq.) and their transferability to other tropical forage grass species. Plant Breed 130(1):104–108

    Article  CAS  Google Scholar 

  • Stein J, Quarin CL, Martínez EJ, Pessino SC, Ortiz JPA (2004) Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory-controlling locus. Theor Appl Genet 109(1):186–191

    Article  CAS  PubMed  Google Scholar 

  • Stein J, Pessino SC, Martínez EJ, Rodriguez MP, Siena LA, Quarin CL, Ortiz JPA (2007) A genetic map of tetraploid Paspalum notatum Flügge (bahiagrass) based on single-dose molecular markers. Mol Breed 20(2):153–166

    Article  CAS  Google Scholar 

  • Still CJ, Berry JA, Collatz GJ, DeFries RS (2003) Global distribution of C-3 and C-4 vegetation: carbon cycle implications. Global Biogeochem Cycles 17:1006

    Article  Google Scholar 

  • Sunil K, Agarwal RK, Dixit AK, Ray AK, Rai SK (2012) Forage crops and their management. Technology Bulletin. Indian Grassland and Fodder Research Institute, Jhansi, p 22

    Google Scholar 

  • Swenne A, Louant B, Dujardin M (1981) Induction par la colchicine de formesautotétraploïdes chez Brachiaria ruziziensis Germain et Evrard (Graminée). Agron Trop 36:134–141

    Google Scholar 

  • Tegegn A, Kyalo M, Mutai C, Hanson J, Asefa G, Djikeng A, Ghimire S (2019) Genetic diversity and population structure of Brachiaria brizantha (A. Rich.) Stapf accessions from Ethiopia. Afr J Range Forage Sci 36(2):129–133

    Article  Google Scholar 

  • Tiwari KK, Chandra A (2010) Use of degenerate primers in rapid generation of microsatellite markers in Panicum maximum. J Environ Biol 31(6):965–968

    CAS  PubMed  Google Scholar 

  • Toledo-Silva G, Cardoso-Silva CB, Jank L, Souza AP (2013) De novo transcriptome assembly for the tropical grass Panicum maximum Jacq. PloS One 8(7):e70781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi BK (2002a) In: Faruqui SA, Suresh G, Pandey KC (eds) Grasses and legumes for tropical pastures. Indian Grassland and Fodder Research Institute, Jhansi, pp 1–55

    Google Scholar 

  • Trivedi BK (2002b) Grasses and legumes for tropical pastures. Indian Grassland and Fodder Research Institute, Jhansi, pp 1–35

    Google Scholar 

  • Triviño NJ, Perez JG, Recio ME, Ebina M, Yamanaka N, Tsuruta SI, Worthington M (2017) Genetic diversity and population structure of Brachiaria species and breeding populations. Crop Sci 57(5):2633–2644

    Article  Google Scholar 

  • Ubi BE, Fujimori M, Ebina M, Mano Y, Komatsu T (2000) AFLP variation in tetraploid cultivars of Rhodesgrass (Chloris gayana Kunth). Jpn J Grassl Sci 46(3–4):242–248

    CAS  Google Scholar 

  • Ubi BE, Fujimori M, Ebina M, Komatsu T (2001) Amplified fragment length polymorphism analysis in diploid cultivars of Rhodes grass. Plant Breed 120(1):85–87

    Article  CAS  Google Scholar 

  • Ubi BE, Kölliker R, Fujimori M, Komatsu T (2003) Genetic diversity in diploid cultivars of Rhodes grass determined on the basis of amplified fragment length polymorphism markers. Crop Sci 43(4):1516–1522

    Article  Google Scholar 

  • Ubi BE, Fujimori M, Mano Y, Komatsu T (2004) A genetic linkage map of Rhodes grass based on an F1 pseudo-testcross population. Plant Breed 123(3):247–253

    Article  CAS  Google Scholar 

  • Vigna BB, Jungmann L, Francisco PM, Zucchi MI, Valle CB, de Souza AP (2011) Genetic diversity and population structure of the Brachiaria brizantha Germplasm. Trop Plant Biol 4:157–169

    Article  Google Scholar 

  • White LM, Wight JR (1984) Forage yield and quality of dryland grasses and legumes. J Range Manage 37:233–236

    Article  Google Scholar 

  • Whiteman PC, Mendra K (1982) Effects of storage and seed treatments on germination of Brachiaria decumbens. Seed Sci Technol 10:233–242

    Google Scholar 

  • World Resources (2000) People and ecosystems: the fraying web of life. World Resources Institute in collaboration with the United Nations Development Programme, The United Nations Environment Program, and the World Bank, Washington, DC

    Google Scholar 

  • Yadav CB, Kumar S, Gupta MG, Bhat V (2012) Genetic linkage maps of the chromosomal regions associated with apomictic and sexual modes of reproduction in Cenchrus ciliaris. Mol Breed 30(1):239–250

    Article  Google Scholar 

  • Yadav CB, Muthamilarasan M, Pandey G, Khan Y, Prasad M (2014) Development of novel microRNA-based genetic markers in foxtail millet for genotyping applications in related grass species. Mol Breed 34(4):2219–2224

    Article  CAS  Google Scholar 

  • Yadav CB, Dwivedi A, Kumar S, Bhat V (2019) AFLP-based genetic diversity analysis distinguishes apomictically and sexually reproducing Cenchrus species. Braz J Bot 42(2):361–371

    Article  Google Scholar 

  • Yamada-Akiyama H, Akiyama Y, Ebina M, Xu Q, Tsuruta S, Yazaki J, Kishimoto N, Kikuchi S, Takahara M, Takamizo T, Sugita S, Nakagawa H (2009) Analysis of expressed sequence tags in apomictic guinea grass (Panicum maximum). J Plant Physiol 166:750–761

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyagi, V.C. et al. (2023). Genetic and Genomic Resources of Range Grasses: Status and Future Prospects. In: Singhal, R.K., Ahmed, S., Pandey, S., Chand, S. (eds) Molecular Interventions for Developing Climate-Smart Crops: A Forage Perspective. Springer, Singapore. https://doi.org/10.1007/978-981-99-1858-4_1

Download citation

Publish with us

Policies and ethics