Skip to main content

Biomolecular Markers of Brain Aging

  • Chapter
  • First Online:
Cognitive Aging and Brain Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1419))

Abstract

Characterized by the gradual loss of physiological integrity, impaired function, and increased susceptibility to death, aging is considered the primary risk factor for major human diseases, such as cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. The time-dependent accumulation of cellular damage is widely considered the general cause of aging. While the mechanism of normal aging is still unresolved, researchers have identified different markers of aging, including genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. Theories of aging can be divided into two categories: (1) aging is a genetically programmed process, and (2) aging is a random process caused by gradual damage to the organism over time as a result of its vital activities. Aging affects the entire human body, and aging of the brain is undoubtedly different from all other organs, as neurons are highly differentiated postmitotic cells, and the lifespan of most neurons in the postnatal period is equal to the lifespan of the brain. In this chapter, we discuss the conserved mechanisms of aging that may underlie the changes observed in the aging brain, with a focus on mitochondrial function and oxidative stress, autophagy and protein turnover, insulin/IGF signaling, target of rapamycin (TOR) signaling, and sirtuin function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Isaev NK, Stelmashook EV, Genrikhs EE (2019) Neurogenesis and brain aging. Rev Neurosci 30(6):573–580

    Article  PubMed  Google Scholar 

  3. Isaev NK, Stelmashook EV, Stelmashook NN, Sharonova IN, Skrebitsky VG (2013) Brain aging and mitochondria-targeted plastoquinone antioxidants of SkQ-type. Biochemistry (Mosc) 78(3):295–300

    Article  CAS  PubMed  Google Scholar 

  4. Worman HJ (2012) Nuclear lamins and laminopathies. J Pathol 226(2):316–325

    Article  CAS  PubMed  Google Scholar 

  5. Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, Kwon M et al (2018) Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359(6375):555–559

    Article  CAS  PubMed  Google Scholar 

  6. Khrapko K, Bodyak N, Thilly WG, van Orsouw NJ, Zhang X, Coller HA et al (1999) Cell-by-cell scanning of whole mitochondrial genomes in aged human heart reveals a significant fraction of myocytes with clonally expanded deletions. Nucleic Acids Res 27(11):2434–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ameur A, Stewart JB, Freyer C, Hagstrom E, Ingman M, Larsson NG et al (2011) Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet 7(3):e1002028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Payne BAI, Wilson IJ, Hateley CA, Horvath R, Santibanez-Koref M, Samuels DC et al (2011) Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtDNA mutations. Nat Genet 43(8):806–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484

    Article  CAS  PubMed  Google Scholar 

  11. Vermulst M, Wanagat J, Kujoth GC, Bielas JH, Rabinovitch PS, Prolla TA et al (2008) DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 40(4):392–394

    Article  CAS  PubMed  Google Scholar 

  12. Hiona A, Sanz A, Kujoth GC, Pamplona R, Seo AY, Hofer T et al (2010) Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PLoS One 5(7):e11468

    Article  PubMed  PubMed Central  Google Scholar 

  13. Harries LW, Hernandez D, Henley W, Wood AR, Holly AC, Bradley-Smith RM et al (2011) Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell 10(5):868–878

    Article  CAS  PubMed  Google Scholar 

  14. Nicholas A, de Magalhaes JP, Kraytsberg Y, Richfield EK, Levanon EY, Khrapko K (2010) Age-related gene-specific changes of A-to-I mRNA editing in the human brain. Mech Ageing Dev 131(6):445–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Magalhães JP, Curado J, Church GM (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics (Oxford, England) 25(7):875–881

    PubMed  Google Scholar 

  16. Finch CE, Morgan DG (1990) RNA and protein metabolism in the aging brain. Annu Rev Neurosci 13:75–88

    Article  CAS  PubMed  Google Scholar 

  17. Strehler BL (1986) Genetic instability as the primary cause of human aging. Exp Gerontol 21(4-5):283–319

    Article  CAS  PubMed  Google Scholar 

  18. Earls LR, Fricke RG, Yu J, Berry RB, Baldwin LT, Zakharenko SS (2012) Age-dependent microRNA control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia. J Neurosci 32(41):14132–14144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Earls LR, Westmoreland JJ, Zakharenko SS (2014) Non-coding RNA regulation of synaptic plasticity and memory: implications for aging. Ageing Res Rev 17:34–42

    Article  CAS  PubMed  Google Scholar 

  20. Aunan JR, Watson MM, Hagland HR, Soreide K (2016) Molecular and biological hallmarks of ageing. Br J Surg 103(2):e29–e46

    Article  CAS  PubMed  Google Scholar 

  21. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20(3):148–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 10(2):205–215

    Article  CAS  PubMed  Google Scholar 

  23. Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nixon RA (2017) Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB J 31(7):2729–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morimoto RI, Cuervo AM (2014) Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S33–S38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pyo J-O, Yoo S-M, Ahn H-H, Nah J, Hong S-H, Kam T-I et al (2013) Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 4:2300–2300

    Article  PubMed  Google Scholar 

  27. Madeo F, Zimmermann A, Maiuri MC, Kroemer G (2015) Essential role for autophagy in life span extension. J Clin Invest 125(1):85–93

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kaushik S, Cuervo AM (2015) Proteostasis and aging. Nat Med 21(12):1406–1415

    Article  CAS  PubMed  Google Scholar 

  29. Di Domenico F, Head E, Butterfield DA, Perluigi M (2014) Oxidative stress and Proteostasis network: culprit and casualty of Alzheimer’s-like neurodegeneration. Adv Geriatr 2014:1–14

    Article  Google Scholar 

  30. Bulteau AL, Szweda LI, Friguet B (2002) Age-dependent declines in proteasome activity in the heart. Arch Biochem Biophys 397(2):298–304

    Article  CAS  PubMed  Google Scholar 

  31. Korovila I, Hugo M, Castro JP, Weber D, Höhn A, Grune T et al (2017) Proteostasis, oxidative stress and aging. Redox Biol 13:550–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. König J, Ott C, Hugo M, Jung T, Bulteau A-L, Grune T et al (2017) Mitochondrial contribution to lipofuscin formation. Redox Biol 11:673–681

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  34. Morrow G, Samson M, Michaud S, Tanguay RM (2004) Overexpression of the small mitochondrial Hsp22 extends drosophila life span and increases resistance to oxidative stress. FASEB J 18(3):598–599

    Article  CAS  PubMed  Google Scholar 

  35. Swindell WR, Masternak MM, Kopchick JJ, Conover CA, Bartke A, Miller RA (2009) Endocrine regulation of heat shock protein mRNA levels in long-lived dwarf mice. Mech Ageing Dev 130(6):393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blake MJ, Udelsman R, Feulner GJ, Norton DD, Holbrook NJ (1991) Stress-induced heat shock protein 70 expression in adrenal cortex: an adrenocorticotropic hormone-sensitive, age-dependent response. Proc Natl Acad Sci U S A 88(21):9873–9877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carnemolla A, Labbadia JP, Lazell H, Neueder A, Moussaoui S, Bates GP (2014) Contesting the dogma of an age-related heat shock response impairment: implications for cardiac-specific age-related disorders. Hum Mol Genet 23(14):3641–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science (New York, N.Y.) 323(5917):1063–1066

    Article  CAS  PubMed  Google Scholar 

  39. Brehme M, Voisine C, Rolland T, Wachi S, Soper JH, Zhu Y et al (2014) A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9(3):1135–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Naidoo N (2009) ER and aging-protein folding and the ER stress response. Ageing Res Rev 8(3):150–159

    Article  CAS  PubMed  Google Scholar 

  41. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110(10):1389–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13(10):1211–1233

    Article  CAS  PubMed  Google Scholar 

  43. Hampton RY (2000) ER stress response: getting the UPR hand on misfolded proteins. Curr Biol 10(14):R518–R521

    Article  CAS  PubMed  Google Scholar 

  44. Prostko CR, Brostrom MA, Brostrom CO (1993) Reversible phosphorylation of eukaryotic initiation factor 2 alpha in response to endoplasmic reticular signaling. Mol Cell Biochem 127–128:255–265

    Article  PubMed  Google Scholar 

  45. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115(10):2656–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Naidoo N, Ferber M, Master M, Zhu Y, Pack AI (2008) Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling. J Neurosci 28(26):6539–6548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Paz Gavilan M, Vela J, Castano A, Ramos B, del Rio JC, Vitorica J et al (2006) Cellular environment facilitates protein accumulation in aged rat hippocampus. Neurobiol Aging 27(7):973–982

    Article  CAS  PubMed  Google Scholar 

  49. Sontag EM, Vonk WIM, Frydman J (2014) Sorting out the trash: the spatial nature of eukaryotic protein quality control. Curr Opin Cell Biol 26:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McConnell KW, Fox AC, Clark AT, Chang N-YN, Dominguez JA, Farris AB et al (2011) The role of heat shock protein 70 in mediating age-dependent mortality in sepsis. J Immunol (Baltimore, Md: 1950) 186(6):3718–3725

    Article  CAS  Google Scholar 

  51. Tong BC, Wu AJ, Li M, Cheung KH (2018) Calcium signaling in Alzheimer's disease & therapies. Biochim Biophys Acta Mol Cell Res 1865(11 Pt B):1745–1760

    Article  CAS  PubMed  Google Scholar 

  52. Mattson MP (2010) ER calcium and Alzheimer's disease: in a state of flux. Sci Signal 3(114):pe10

    Article  PubMed  PubMed Central  Google Scholar 

  53. Popugaeva E, Bezprozvanny I (2013) Role of endoplasmic reticulum Ca2+ signaling in the pathogenesis of Alzheimer disease. Front Mol Neurosci 6:29–29

    Article  PubMed  PubMed Central  Google Scholar 

  54. Raza M, Deshpande LS, Blair RE, Carter DS, Sombati S, DeLorenzo RJ (2007) Aging is associated with elevated intracellular calcium levels and altered calcium homeostatic mechanisms in hippocampal neurons. Neurosci Lett 418(1):77–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thibault O, Gant JC, Landfield PW (2007) Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: minding the store. Aging Cell 6(3):307–317

    Article  CAS  PubMed  Google Scholar 

  56. Ris L, Godaux E (2007) Synapse specificity of long-term potentiation breaks down with aging. Learn Mem 14(3):185–189

    Article  PubMed  Google Scholar 

  57. Gant JC, Sama MM, Landfield PW, Thibault O (2006) Early and simultaneous emergence of multiple hippocampal biomarkers of aging is mediated by Ca2+−induced Ca2+ release. J Neurosci 26(13):3482–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thibault O, Landfield PW (1996) Increase in single L-type calcium channels in hippocampal neurons during aging. Science 272(5264):1017–1020

    Article  CAS  PubMed  Google Scholar 

  59. Navakkode S, Liu C, Soong TW (2018) Altered function of neuronal L-type calcium channels in ageing and neuroinflammation: implications in age-related synaptic dysfunction and cognitive decline. Ageing Res Rev 42:86–99

    Article  CAS  PubMed  Google Scholar 

  60. Landfield PW, Pitler TA (1984) Prolonged Ca2+−dependent afterhyperpolarizations in hippocampal neurons of aged rats. Science 226(4678):1089–1092

    Article  CAS  PubMed  Google Scholar 

  61. Toescu EC, Verkhratsky A, Landfield PW (2004) Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci 27(10):614–620

    Article  CAS  PubMed  Google Scholar 

  62. Burke SN, Barnes CA (2010) Senescent synapses and hippocampal circuit dynamics. Trends Neurosci 33(3):153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kumar A, Foster TC (2005) Intracellular calcium stores contribute to increased susceptibility to LTD induction during aging. Brain Res 1031(1):125–128

    Article  CAS  PubMed  Google Scholar 

  64. Norris CM, Halpain S, Foster TC (1998) Reversal of age-related alterations in synaptic plasticity by blockade of L-type Ca2+ channels. J Neurosci 18(9):3171–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rose GM, Ong VS, Woodruff-Pak DS (2007) Efficacy of MEM 1003, a novel calcium channel blocker, in delay and trace eyeblink conditioning in older rabbits. Neurobiol Aging 28(5):766–773

    Article  CAS  PubMed  Google Scholar 

  66. Zoladz PR, Campbell AM, Park CR, Schaefer D, Danysz W, Diamond DM (2006) Enhancement of long-term spatial memory in adult rats by the noncompetitive NMDA receptor antagonists, memantine and neramexane. Pharmacol Biochem Behav 85(2):298–306

    Article  CAS  PubMed  Google Scholar 

  67. Foster TC, Norris CM (1997) Age-associated changes in ca(2+)-dependent processes: relation to hippocampal synaptic plasticity. Hippocampus 7(6):602–612

    Article  CAS  PubMed  Google Scholar 

  68. Bear MF, Cooper LN, Ebner FF (1987) A physiological basis for a theory of synapse modification. Science 237(4810):42–48

    Article  CAS  PubMed  Google Scholar 

  69. Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120(23):4081

    Article  CAS  PubMed  Google Scholar 

  70. Wolfe DM, Lee J-H, Kumar A, Lee S, Orenstein SJ, Nixon RA (2013) Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification. Eur J Neurosci 37(12):1949–1961

    Article  PubMed  PubMed Central  Google Scholar 

  71. Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S et al (2006) TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem 281(11):7294–7301

    Article  CAS  PubMed  Google Scholar 

  72. Curcio-Morelli C, Charles FA, Micsenyi MC, Cao Y, Venugopal B, Browning MF et al (2010) Macroautophagy is defective in mucolipin-1-deficient mouse neurons. Neurobiol Dis 40(2):370–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vergarajauregui S, Connelly PS, Daniels MP, Puertollano R (2008) Autophagic dysfunction in mucolipidosis type IV patients. Hum Mol Genet 17(17):2723–2737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pitt SJ, Funnell TM, Sitsapesan M, Venturi E, Rietdorf K, Ruas M et al (2010) TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+. J Biol Chem 285(45):35039–35046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bezprozvanny I (2009) Calcium signaling and neurodegenerative diseases. Trends Mol Med 15(3):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12(2):376–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280(17):17294–17300

    Article  CAS  PubMed  Google Scholar 

  78. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends Neurosci 31(9):454–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ando S (2012) Neuronal dysfunction with aging and its amelioration. Proc Jpn Acad B Phys Biol Sci 88(6):266–282

    Article  CAS  Google Scholar 

  80. Ando S, Tanaka Y (1990) Synaptic membrane aging in the central nervous system. Gerontology 36(Suppl 1):10–14

    Article  PubMed  Google Scholar 

  81. Gibson GE, Peterson C (1981) Aging decreases oxidative metabolism and the release and synthesis of acetylcholine. J Neurochem 37(4):978–984

    Article  CAS  PubMed  Google Scholar 

  82. Tanaka Y, Hasegawa A, Ando S (1996) Impaired synaptic functions with aging as characterized by decreased calcium influx and acetylcholine release. J Neurosci Res 43(1):63–76

    Article  CAS  PubMed  Google Scholar 

  83. Tanaka Y, Ando S (2001) Age-related changes in the subtypes of voltage-dependent calcium channels in rat brain cortical synapses. Neurosci Res 39(2):213–220

    Article  CAS  PubMed  Google Scholar 

  84. Tanaka Y, Ando S (1990) Synaptic aging as revealed by changes in membrane potential and decreased activity of Na+, K(+)-ATPase. Brain Res 506(1):46–52

    Article  CAS  PubMed  Google Scholar 

  85. Marcus MM, Apell HJ, Roudna M, Schwendener RA, Weder HG, Lauger P (1986) (Na+ + K+)-ATPase in artificial lipid vesicles: influence of lipid structure on pumping rate. Biochim Biophys Acta 854(2):270–278

    Article  CAS  PubMed  Google Scholar 

  86. Saito S, Kobayashi S, Ohashi Y, Igarashi M, Komiya Y, Ando S (1994) Decreased synaptic density in aged brains and its prevention by rearing under enriched environment as revealed by synaptophysin contents. J Neurosci Res 39(1):57–62

    Article  CAS  PubMed  Google Scholar 

  87. Carlsson A, Winblad B (1976) Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J Neural Transm 38(3-4):271–276

    Article  CAS  PubMed  Google Scholar 

  88. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305(5930):137–138

    Article  CAS  PubMed  Google Scholar 

  89. Kaasinen V, Rinne JO (2002) Functional imaging studies of dopamine system and cognition in normal aging and Parkinson's disease. Neurosci Biobehav Rev 26(7):785–793

    Article  CAS  PubMed  Google Scholar 

  90. Suhara T, Fukuda H, Inoue O, Itoh T, Suzuki K, Yamasaki T et al (1991) Age-related changes in human D1 dopamine receptors measured by positron emission tomography. Psychopharmacology 103(1):41–45

    Article  CAS  PubMed  Google Scholar 

  91. Wang Y, Chan GL, Holden JE, Dobko T, Mak E, Schulzer M et al (1998) Age-dependent decline of dopamine D1 receptors in human brain: a PET study. Synapse 30(1):56–61

    Article  CAS  PubMed  Google Scholar 

  92. Rinne JO, Hietala J, Ruotsalainen U, Sako E, Laihinen A, Nagren K et al (1993) Decrease in human striatal dopamine D2 receptor density with age: a PET study with [11C]raclopride. J Cereb Blood Flow Metab 13(2):310–314

    Article  CAS  PubMed  Google Scholar 

  93. Rinne JO, Sahlberg N, Ruottinen H, Nagren K, Lehikoinen P (1998) Striatal uptake of the dopamine reuptake ligand [11C]beta-CFT is reduced in Alzheimer's disease assessed by positron emission tomography. Neurology 50(1):152–156

    Article  CAS  PubMed  Google Scholar 

  94. Volkow ND, Fowler JS, Wang GJ, Logan J, Schlyer D, MacGregor R et al (1994) Decreased dopamine transporters with age in health human subjects. Ann Neurol 36(2):237–239

    Article  CAS  PubMed  Google Scholar 

  95. Lanni C, Govoni S, Lucchelli A, Boselli C (2009) Depression and antidepressants: molecular and cellular aspects. Cell Mol Life Sci 66(18):2985–3008

    Article  CAS  PubMed  Google Scholar 

  96. Sibille E, Su J, Leman S, Le Guisquet AM, Ibarguen-Vargas Y, Joeyen-Waldorf J et al (2007) Lack of serotonin1B receptor expression leads to age-related motor dysfunction, early onset of brain molecular aging and reduced longevity. Mol Psychiatry 12(11):1042–1056, 1975

    Google Scholar 

  97. Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D et al (1998) XVI. International Union of Pharmacology Recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 50(1):143

    CAS  PubMed  Google Scholar 

  98. Botelho M, Cavadas C (2015) Neuropeptide Y: an anti-aging player? Trends Neurosci 38(11):701–711

    Article  CAS  PubMed  Google Scholar 

  99. Michalkiewicz M, Knestaut KM, Bytchkova EY, Michalkiewicz T (2003) Hypotension and reduced catecholamines in neuropeptide Y transgenic rats. Hypertension 41(5):1056–1062

    Article  CAS  PubMed  Google Scholar 

  100. Hedden T, Gabrieli JD (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5(2):87–96

    Article  CAS  PubMed  Google Scholar 

  101. Redrobe JP, Dumont Y, Herzog H, Quirion R (2004) Characterization of neuropeptide Y, Y(2) receptor knockout mice in two animal models of learning and memory processing. J Mol Neurosci 22(3):159–166

    Article  CAS  PubMed  Google Scholar 

  102. Cha CI, Lee YI, Lee EY, Park KH, Baik SH (1997) Age-related changes of VIP, NPY and somatostatin-immunoreactive neurons in the cerebral cortex of aged rats. Brain Res 753(2):235–244

    Article  CAS  PubMed  Google Scholar 

  103. Kowalski C, Micheau J, Corder R, Gaillard R, Conte-Devolx B (1992) Age-related changes in cortico-releasing factor, somatostatin, neuropeptide Y, methionine enkephalin and beta-endorphin in specific rat brain areas. Brain Res 582(1):38–46

    Article  CAS  PubMed  Google Scholar 

  104. Lanni C, Stanga S, Racchi M, Govoni S (2010) The expanding universe of neurotrophic factors: therapeutic potential in aging and age-associated disorders. Curr Pharm Des 16(6):698–717

    Article  CAS  PubMed  Google Scholar 

  105. Mattson MP, Barger SW, Furukawa K, Bruce AJ, Wyss-Coray T, Mark RJ et al (1997) Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responses and Alzheimer's disease. Brain Res Brain Res Rev 23(1-2):47–61

    Article  CAS  PubMed  Google Scholar 

  106. Ai Y, Markesbery W, Zhang Z, Grondin R, Elseberry D, Gerhardt GA et al (2003) Intraputamenal infusion of GDNF in aged rhesus monkeys: distribution and dopaminergic effects. J Comp Neurol 461(2):250–261

    Article  CAS  PubMed  Google Scholar 

  107. Schecterson LC, Bothwell M (1992) Novel roles for neurotrophins are suggested by BDNF and NT-3 mRNA expression in developing neurons. Neuron 9(3):449–463

    Article  CAS  PubMed  Google Scholar 

  108. Katoh-Semba R, Takeuchi IK, Semba R, Kato K (1997) Distribution of brain-derived neurotrophic factor in rats and its changes with development in the brain. J Neurochem 69(1):34–42

    Article  CAS  PubMed  Google Scholar 

  109. Gooney M, Messaoudi E, Maher FO, Bramham CR, Lynch MA (2004) BDNF-induced LTP in dentate gyrus is impaired with age: analysis of changes in cell signaling events. Neurobiol Aging 25(10):1323–1331

    Article  CAS  PubMed  Google Scholar 

  110. Croll SD, Ip NY, Lindsay RM, Wiegand SJ (1998) Expression of BDNF and trkB as a function of age and cognitive performance. Brain Res 812(1-2):200–208

    Article  CAS  PubMed  Google Scholar 

  111. Pelleymounter MA, Cullen MJ, Baker MB, Gollub M, Wellman C (1996) The effects of intrahippocampal BDNF and NGF on spatial learning in aged long Evans rats. Mol Chem Neuropathol 29(2-3):211–226

    Article  CAS  PubMed  Google Scholar 

  112. Sokoloff L (1992) Chapter 2: the brain as a chemical machine. In: Neuronal-astrocytic interactions - implications for Normal and pathological CNS function. Progress in Brain Research, pp 19–33

    Chapter  Google Scholar 

  113. Hamberger A, Hyden H (1963) Inverse enzymatic changes in neurons and glia during increased function and hypoxia. J Cell Biol 16(3):521–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hyden H, Lange PW (1962) A kinetic study of the neuronglia relationship. J Cell Biol 13(2):233–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jones JP, Nicholas HJ, Ramsey RB (1975) Rate of sterol formation by rat brain glia and neurons in vitro and in vivo. J Neurochem 24(1):123–126

    Article  CAS  PubMed  Google Scholar 

  116. Ramsey RB, Jones JP, Naqvi SH, Nicholas HJ (1971) The biosynthesis of cholesterol and other sterols by brain tissue. II. A comparison of in vitro and in vivo methods. Lipids 6(4):225–232

    Article  CAS  PubMed  Google Scholar 

  117. Camandola S, Mattson MP (2017) Brain metabolism in health, aging, and neurodegeneration. EMBO J 36(11):1474–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ding F, Yao J, Rettberg JR, Chen S, Brinton RD (2013) Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer's mouse brain: implication for bioenergetic intervention. PLoS One 8(11):e79977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bowling AC, Mutisya EM, Walker LC, Price DL, Cork LC, Beal MF (1993) Age-dependent impairment of mitochondrial function in primate brain. J Neurochem 60(5):1964–1967

    Article  CAS  PubMed  Google Scholar 

  120. Meier-Ruge W, Iwangoff P, Reichlmeier K, Sandoz P (1980) Neurochemical findings in the aging brain. Adv Biochem Psychopharmacol 23:323–338

    CAS  PubMed  Google Scholar 

  121. Stahon KE, Bastian C, Griffith S, Kidd GJ, Brunet S, Baltan S (2016) Age-related changes in axonal and mitochondrial ultrastructure and function in white matter. J Neurosci 36(39):9990–10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bai P, Cantó C, Oudart H, Brunyánszki A, Cen Y, Thomas C et al (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13(4):461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pittelli M, Felici R, Pitozzi V, Giovannelli L, Bigagli E, Cialdai F et al (2011) Pharmacological effects of exogenous NAD on mitochondrial bioenergetics, DNA repair, and apoptosis. Mol Pharmacol 80(6):1136–1146

    Article  CAS  PubMed  Google Scholar 

  124. Zhu X-H, Lu M, Lee B-Y, Ugurbil K, Chen W (2015) In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc Natl Acad Sci U S A 112(9):2876–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. de Leon MJ, Ferris SH, George AE, Reisberg B, Christman DR, Kricheff II et al (1983) Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer's disease. J Cereb Blood Flow Metab 3(3):391–394

    Article  PubMed  Google Scholar 

  126. Mosconi L, De Santi S, Li J, Tsui WH, Li Y, Boppana M et al (2008) Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging 29(5):676–692

    Article  CAS  PubMed  Google Scholar 

  127. Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY et al (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A 97(11):6037–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zuendorf G, Kerrouche N, Herholz K, Baron JC (2003) Efficient principal component analysis for multivariate 3D voxel-based mapping of brain functional imaging data sets as applied to FDG-PET and normal aging. Hum Brain Mapp 18(1):13–21

    Article  PubMed  Google Scholar 

  129. Kuhl DE, Metter EJ, Riege WH, Hawkins RA (1984) The effect of normal aging on patterns of local cerebral glucose utilization. Ann Neurol 15(Suppl):S133–S137

    Article  PubMed  Google Scholar 

  130. Gage FH, Kelly PA, Björklund A (1984) Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats. J Neurosci 4(11):2856–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Grossman LI, Schmidt TR, Wildman DE, Goodman M (2001) Molecular evolution of aerobic energy metabolism in primates. Mol Phylogenet Evol 18(1):26–36

    Article  CAS  PubMed  Google Scholar 

  132. Haygood R, Fedrigo O, Hanson B, Yokoyama KD, Wray GA (2007) Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nat Genet 39(9):1140–1144

    Article  CAS  PubMed  Google Scholar 

  133. Pontzer H, Brown MH, Raichlen DA, Dunsworth H, Hare B, Walker K et al (2016) Metabolic acceleration and the evolution of human brain size and life history. Nature 533(7603):390–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  CAS  PubMed  Google Scholar 

  135. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75(5):762–777

    Article  CAS  PubMed  Google Scholar 

  136. Rangaraju V, Calloway N, Ryan TA (2014) Activity-driven local ATP synthesis is required for synaptic function. Cell 156(4):825–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fabiani M, Low KA, Tan CH, Zimmerman B, Fletcher MA, Schneider-Garces N et al (2014) Taking the pulse of aging: mapping pulse pressure and elasticity in cerebral arteries with optical methods. Psychophysiology 51(11):1072–1088

    Article  PubMed  PubMed Central  Google Scholar 

  138. Schultz SK, O'Leary DS, Boles Ponto LL, Watkins GL, Hichwa RD, Andreasen NC (1999) Age-related changes in regional cerebral blood flow among young to mid-life adults. Neuroreport 10(12):2493–2496

    Article  CAS  PubMed  Google Scholar 

  139. Rosenberg GA (2012) Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab 32(7):1139–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci 12(12):723–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, M., An, H., Wang, W., Wei, D. (2023). Biomolecular Markers of Brain Aging. In: Zhang, Z. (eds) Cognitive Aging and Brain Health. Advances in Experimental Medicine and Biology, vol 1419. Springer, Singapore. https://doi.org/10.1007/978-981-99-1627-6_9

Download citation

Publish with us

Policies and ethics