Skip to main content

Guava

  • Living reference work entry
  • First Online:
Fruit and Nut Crops

Abstract

Guava, scientifically known as Psidium guajava L., is a fruit tree commonly grown for its sweet and fragrant fruits. Its genetic diversity is crucial for its ability to adapt to different environmental conditions, resist pests and diseases, and produce improved varieties through selective breeding. The plant genetic resources of guava include its wild relatives, various landraces, and improved cultivars. Unfortunately, like other plant species, guava is threatened by habitat loss and degradation. Conserving guava PGR helps preserve the biodiversity of this species and its wild relatives. It is a significant food crop in many tropical and subtropical regions, serving as a source of nutrition and income for local communities. Conserving the genetic diversity of guava ensures that breeders have access to a broad range of genetic resources, allowing them to develop new varieties with desirable traits such as improved yield and disease resistance. With changing climate, crop plants such as guava need to adapt, preserve its genetic diversity, and ensure that breeders can develop new varieties that can thrive under different environmental conditions. Guava is also valuable for scientific research, including studies of its biology, ecology, and genetic diversity. Conserving guava PGR ensures that these resources are available for future research. Overall, conserving the genetic resources of guava is crucial for the long-term sustainability of this tropical fruit crop, the preservation of biodiversity, and the advancement of scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aranguren Y, Briceño A, Fermin G (2008, November) Assessment of the variability of Venezuelan guava landraces by microsatellites. In: II International symposium on guava and other Myrtaceae, vol 849, pp 147–154

    Google Scholar 

  • Atkinson E (1947) Chromosomes atlas of flowering plants. Allen and Unwin, London

    Google Scholar 

  • Bajpai A, Chandra R, Rajan S, Srivastava N (2008) RAPD and minisatellite markers for genetic diversity and relationship in guava varieties. Indian J Genet Plant Breed 68(4):441

    CAS  Google Scholar 

  • Bogantes AA, Mora EN (2008) Evaluación de patrones de guayaba (Psidium guajava). Resúmenes de la 54 reuniónanual del programacooperativo Centro- 366 americano para el mejoramiento de cultivos y animales

    Google Scholar 

  • Carneiro RMDG, Freitas VM, Mattos JK, Castro JM, Gomes CB, Carneiro RG (2012) Major guava nematodes and control prospects using resistance on Psidium spp. and non-host crops. Acta Hortic 959:41–49

    Article  Google Scholar 

  • Carvalho JM, Maia GA, Figueiredo RW, Brito ES, Rordrigues S (2006) Development of a blended beverage consisting of coconut water and cashew apple juice containing caffeine. Int J Food Sci Technol 42:1195–1200

    Article  Google Scholar 

  • Cheema GS, Bhat SS, Naik KC (1954) Commercial Fruits of India with Special Reference to Western India. MacMillan and Co, Calcutta

    Google Scholar 

  • Chen T, Ng C, Wang C, Shyu Y (2007) Molecular identification and analysis of Psidium guajava L. from indigenous tribes of Taiwan. J Food Drug Anal 15(1):82

    CAS  Google Scholar 

  • Chezhiyan N (1988) Stigma receptivity, flower shedding, flower abnormality and pollination studies in Psidium sp. Madras Agri J 75(1–2):29–32

    Google Scholar 

  • Correa LC, Santos CAF, Lima GPP (2012) Chemical and biochemical characterization of guava and araca fruits from different regions of Brazil. In: 3rd International symposium on guava and other Myrtaceae, Petrolina, PE, Brazil, p 20

    Google Scholar 

  • Coser SM, Ferreira MFS, Ferreira A, Mitre LK, Carvalho C, Clarindo WR (2012a) Assessment of genetic diversity in Psidium guajava L. using different approaches. Sci Hortic 148:223–229

    Article  CAS  Google Scholar 

  • Coser, SM, Ferreira MFS, Ferreira A (2012b) Pollen viability of guava genotypes from different locations. In: 3rd International symposium on guava and other Myrtaceae held at Petrolina PE Brazil. Session III: Myrtaceae Plant Breeding and Post-Harvest Management

    Google Scholar 

  • Dahiya KK, Archak S, Karihaloo JL (2002) DNA fingerprinting of guava (Psidium guajava L.) cultivars using RAPD markers. Indian J Plant Gen Res 15(2):112–115

    Google Scholar 

  • De Candolle A (1908) Origin of cultivated plants. Appleton, New York

    Google Scholar 

  • Dinesh MR, Vasugi C (2010) Guava improvement in India and future needs. J Hortic Sci 5:94–108

    Article  Google Scholar 

  • Edward JC, Shankar G (1961) Rootstock trials for guava wilt control. Allahabad Farmer 35:5–9

    Google Scholar 

  • Edward JC, Shankar G (1964) Rootstock trial for guava (P. guajava L.). Allahabad Farmer 38:521–527

    Google Scholar 

  • Ellshoff ZE, Gardner DE, Wikler C (1995) Annotated bibliography of the genus Psidium with emphasis on Psidium cattleianum (strawberry guava) and Psidium guajava (common guava), forest weeds in Hawai’i. Technical Report 95. Cooperative National Park Resources Studies Unit, University of Hawai’i, Department of Botany, Honolulu, p 102

    Google Scholar 

  • Fatta Del Bosco S, Matrango G, Geraci G (1992) Micro and macro sporogenesis of two triploid hybrids of citrus. Proc Int Soc Citricult 1:122–124

    Google Scholar 

  • Gangaraj R, Nagaraja A, Gaba S, Das A, Prameeladevi T, Debbarma R, Kamil D (2022) Occurrence, identification and pathogenicity of Fusarium species associated with guava wilt disease in India. Arch Phytopathol Plant Protect 55(2):175–197

    Article  CAS  Google Scholar 

  • Gonzaga Neto L (1999) Melhoramentogenetico da goiabeira. In: Queiroz MA, de Goedert CO, Ramos SRR (eds) Recursosgeneticos e melhoramento de plantas para o Nordeste brasileiro (on line). Versao 1.0. Embrapa Semi-Arido/Embrapa Recursos Geneticos e Biotecnologia, Petrolina/Brasilia

    Google Scholar 

  • Gonzaga Neto L, Soares JM (1994) Goiaba para exportac¸ ao: aspectostecnicos da produc¸ ao, vol 49. Embrapa-SPI, Brasılia

    Google Scholar 

  • Gonzaga NL, Bezerra JEF, Montano JC (1999) Introduction and evaluation of Indian varieties of guava in the region of Submedio San Francisco. Pesquisaem Andamento Embrapa Semi Arido 95:3

    Google Scholar 

  • Hayes WB (1953) Fruit Growing in India. Kitabistan, Allahabad

    Google Scholar 

  • Hayes WB (1957) The guava and its relative. In: Fruit growing in India. Kitabistan, Allahabad, pp 286–303

    Google Scholar 

  • Hernández-Delgado S, Padilla-Ramírez JS, Nava-Cedillo A et al (2007) Morphological and genetic diversity of Mexican guava germplasm. Plant Genet Resour Character Util 5(3):131–141

    Article  Google Scholar 

  • Indap MA, Radhika S, Motiwale L (2006) Quercetin: antitumor activity and pharmacological manipulations for increased therapeutic gains. Ind J Pharm Sci 68(4):465–469

    Article  CAS  Google Scholar 

  • Joseph S, Chatli MK, Biswas AK et al (2012) Efficacy of pink guava pulp as an antioxidant in raw pork emulsion. J Food Sci Tech 88:113–118

    Google Scholar 

  • Kamath JV, Rahul N, Kumar CA, Lakshmi SM (2008) Psidium guajava L: a review. Int J Green Pharm 2(1):9–12

    Article  Google Scholar 

  • Kanupriya C, Latha P, Aswath C, Laxman R, Padmakar B, Vasugi C, Dinesh MR (2011) Cultivar identification and genetic fingerprinting of guava (Psidium guajava) using microsatellite markers. Int J Fruit Sci 11:184–196

    Article  Google Scholar 

  • Kothagoda N, Rao AN (2009) Medicinal use and fruit development of ten tropical fruit species. J Trop Med Plants 10(2):231–235

    Google Scholar 

  • Kwee LT, Chong KK (1990) Guava in Malaysia: production, pest and diseases. Tropical Press SdnBhd, Kuala Lumpur

    Google Scholar 

  • Leu LS, Kao CW, Wang CC et al (1979) Myxosporium wilt of guava and its control. Plant Dis Rep 63:1075–1077

    CAS  Google Scholar 

  • Lorenzi H (2000) Manual de identificação e cultivo de plantasarbóreasnativas do Brasil: árvoresbrasileiras

    Google Scholar 

  • Mahattanatawee K, Manthey JA, Talcott ST, Goodner K, Baldwin EA (2006) Total antioxidant activity and fiber content of select Florida-grown tropical fruits. J Agric Food Chem 54:7355–7363

    Article  CAS  PubMed  Google Scholar 

  • Malo SE, Campbell CW (1994) The guava HS-4. Florida Cooperation Extension Service, IFAS, University of Florida, Gainesville, p 2

    Google Scholar 

  • Marcelin OP, William P, Brillouet JM (1993) Isolation and characterization of the two main cell types from guava (Psidium guajava L.) pulp. Carbohydr Res 240:233–243

    Article  CAS  Google Scholar 

  • Mercadanteaz SA, Pfander H (1999) Carotenoids from guava (Psidium guajava L): isolation and structure elucidation. J Agric Food Chem 47:145–151

    Article  Google Scholar 

  • Mieankh MS (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49:3106–3112

    Article  Google Scholar 

  • Milan AR (2010) Collection and evaluation of guava (Psidium guajava L.) for nematode resistance in Malaysia. In: Rohde W, Fermin G (eds) Proceedings of the IInd IS on Guava and other Myrtaceae. Acta Horticulture, vol 849, pp 357–362

    Google Scholar 

  • Misra AK (1998–1999) Screening against wilt. Annual report. CISH, Lucknow, p 10

    Google Scholar 

  • Misra K, Seshadri T (1968) Chemical components of the fruits of Psidium guava. Phytochemistry 7:641–645

    Article  CAS  Google Scholar 

  • Misra AK, Rajan S, Shukla BP et al (2003) Resistant source of wilt disease of guava. Souvenir & Abstract, Zonal Conference (East Zone), Indian Society of Mycology and Plant Pathology & Seminar on Plant Diseases of National Importance with Special Reference to Guava Wilt and Mango Malformation. 4–5 April, 2003. CISH and IISR, Lucknow, pp 51–52

    Google Scholar 

  • Mitra S (1997) Postharvest physiology and storage of tropical and subtropical fruits. CAB International, New York

    Google Scholar 

  • Mitra SK, Sanyal B (2004) Guava. ICAR Publication, Pusa/New Delhi, pp 13–18

    Google Scholar 

  • Molero T, Molina J, Casassa-Padrón AM (2010) Avancesen el estudiogenético de la resistencia de cultivares de Psidium spp. a Meloidogyne spp. en un bosque seco tropical. Acta Hortic 849:309–318

    Article  Google Scholar 

  • Morton JF (1987) Fruits of warm climates. University of Miami, Florida, USA 517:446–483

    Google Scholar 

  • Narciso NR, Juliette V, Julio AR, Josefa BV et al (2014) Characterization and clustering of some guava germplasm collections based on leaf and fruit characters. Agrivita 36(1):91

    Google Scholar 

  • Nasution F, Hadiati S (2014) Characterization and clustering of some guava germplasm collections based on leaf and fruit characters. Agrivita 36(1):91

    Google Scholar 

  • Newsome R (1993) Sugar substitutes. In: Altschul AM (ed) Lowcalorie foods handbook, vol 8. Marcel Dekker, New York, pp 139–170

    Google Scholar 

  • Normand F (1994) Strawberry guava relevance for Reunion. Fruits Paris 49:217–227

    Google Scholar 

  • Padula M, Rodriguez-Amaya DB (1986) Characterisation of the carotenoids and assessment of the vitamin A value of Brazilian guavas (Psidium guajava L.). Food Chem 20(1):11–19

    Article  CAS  Google Scholar 

  • Pathak RK, Ojha CM (1993) Genetic resources of guava. In: Chadha KL, Pareek OP (eds) Advances in horticulture, vol III. Malhotra Publishing House, New Delhi, pp 143–147

    Google Scholar 

  • Pereira FM, Nachtigal JC (2002) Goiabeira. In: Bruckner CH (ed) Melhoramento de Fruteiras Tropicais. UFV, Viçosa, pp 267–289

    Google Scholar 

  • Pommer CV, Murakami KRN (2009) Breeding guava (Psidium guajava L.). In: Jain SM, Pommer CV (eds) Breeding plantation tree crop: tropical species. Springer Sciences and Business Media, LLC, New York, pp 83–120

    Chapter  Google Scholar 

  • Popenoe W (1920) Manual of tropical and subtropical fruits. Macmillan, New York

    Google Scholar 

  • Prakash DP, Narayanaswamy P, Sondur SN (2002) Analysis of molecular diversity in guava using RAPD markers. J Hortic Sci Biotechnol 77(3):287–293

    Article  CAS  Google Scholar 

  • Purseglove JW (1968) Tropical crops: dicotyledons, vol 2. Wiley, New York, pp 414–419

    Google Scholar 

  • Rahim MA, Fakir MSA, Hossain MM, Alam MS, Anwar MM, Alam AK et al (2012) BAU germplasm center – the largest fruit repository in Bangladesh-one stop service for quality planting materials of fruits, conservation, development, production, diversity, research and extension. In: Proceedings of the international symposium on minor fruits and medicinal plants for health and ecological security (ISMF & MP), West Bengal, India, pp 3–6

    Google Scholar 

  • Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010) Biotechnologies advances in guava (Psidium guajava L.): recent developments and prospects for further research. Trees 24:1–12

    Article  CAS  Google Scholar 

  • Rajan S, Negi SS (2005) Improvement of guava through breeding. In: Proceedings of the I International Guava Symposium, vol 735, pp 31–37

    Google Scholar 

  • Risterucci AM, Duval MF, Rohde W, Billottte N (2005) Isolation and characterization of microsatellite loci from Psidium guajava L. Mol Ecol Notes 5:745–748

    Article  CAS  Google Scholar 

  • Rodriguez MN, Valdes N, Rodriguez JJ, Velasquez JA, Rivero JB, Martinez DF, Gonzalez F, Sourd G, Gonzalez DG, Canizares J (2010) Genetic resources and breeding of guava (Psidium guajava L.) in Cuba. Appl Biotechnol 27:238–241

    Google Scholar 

  • Ruehle GD (1964) El cultivo de la guayabaen la Florida. Agric Trop Trinidad 10:555–564

    Google Scholar 

  • Sánchez-Teyer, LF, Barraza-Morales A, Quiroz-Moreno A, Ortiz-Garcia MM, Becerril-Chi K, Keb-LLanes M, Padilla-Ramírez JS (2010) Genetic diversity of Mexican guava germplasm evaluated using AFLP and SSR markers. Acta horticulturae 859:255–260

    Google Scholar 

  • Santos CAF, Correa LC (2012) Antioxidant and biochemical content in Brazilian guava germplasm with white, red and pink Pulps. In: III International Symposium on Guava and other Myrtaceae, vol 959, pp 125–130

    Google Scholar 

  • Santos CAF, Correa LC, Costa SR (2011) Genetic divergence among Psidium accessions based on biochemical and agronomic variables. Crop Breed App Biotechnol 11(2):149–156

    Article  Google Scholar 

  • Saxena S, Rajan K, Chandra S, Srivastava R, Bajpai A (2007) Molecular characterization of closely related open pollinated seedling selections in guava. Acta Hortic 735:49–55

    Article  CAS  Google Scholar 

  • Sharma AS, Sehrawat SK, Singhrot RS, Boora KS (2005) December. Assessment of genetic diversity and relationship among Psidium spp. through RAPD analysis. In: I International Guava Symposium, vol 735, pp 71–78

    Google Scholar 

  • Singh N (2020) Emerging problem of guava decline caused by Meloidogyne enterolobii and Fusarium oxysporum f. sp. psidii. Indian Phytopathol 73(2):373–374

    Article  Google Scholar 

  • Singh R, Sehgal OP (1968) Studies on blossom biology of Psidium guajava L. (guava). II. Pollen studies, stigma receptivity, pollen and fruit set. Indian J Hortic 25:52–59

    Google Scholar 

  • Singh UR, Dhar L, Singh G (1977) Note on the performance of guava cultivars and Psidium spp. against wilt disease under natural field conditions. Haryana J Hortic Sci 6:149–150

    Google Scholar 

  • Singh BP, Anuj Singh R, Singh G, Killadi B (2005) Response of bagging on maturity, ripening and storage behavior of ‘Winter Guava’. In: I International Guava Symposium, vol 735, pp 597–601

    Google Scholar 

  • Singh IM, Shishehbor MH, Ansell BJ (2007) High-density lipoprotein as a therapeutic target: a systematic review. JAMA 298(7):786–798

    Article  CAS  PubMed  Google Scholar 

  • Sitther V, Zhang D, Harris DL, Yadav AK, Zee FT, Meinhardt LW, Dhekney SA (2014) Genetic characterization of guava (Psidium guajava L.) germplasm in the United States using microsatellite markers. Genet Resour Crop Evol 61:829–839

    Article  CAS  Google Scholar 

  • Soubihe Sobrinho J (1951) Estudosb’asicos para o melhoramento da goiabeira (Psidiumguajava L.). ESALQ, São Paulo, p 166

    Google Scholar 

  • Soubihe Sobrinho J, Pompeu AS, Gurgel JTA (1961) Tetraploidiaemgoiabeira. Reuniaõ Anual da Sociedade Botanica do Brasil, XII. Anais. São Paulo, pp 23–24

    Google Scholar 

  • Subramanyam MD, Iyer CPA (1993) Improvement of guava. In: Advances in horticulture: fruit crops, vol 1. Malhotra Publishing House, New Delhi, pp 337–347

    Google Scholar 

  • Thaipong K, Boonprakob U (2005) Genetic and environmental variance components in guava fruit qualities. Sci Hortic 104(1):37–47

    Article  CAS  Google Scholar 

  • Thaipong K, Boonprakob U, Crosby K et al (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675

    Google Scholar 

  • Usman M, Samad WA, Fatima B, Shah MH (2013) Pollen parent enhances fruit size and quality in intervarietal crosses in guava (Psidium guajava). Int J Agric Biol 15(1):125–129

    Google Scholar 

  • Vasugi C, Dinesh MR (2007) Genetic variability in some Psidium species. Indian J Agric Sci 77(1):420–423

    CAS  Google Scholar 

  • Vasugi C, Reddy R (2005) Evaluation of exotic guava accessions for pectin and tannin content and their correlation to fruit fly damage. Indian J Plant Genet Resour 18(1):73–75

    Google Scholar 

  • Vishwakarma PK, Vasugi C, Umamaheswari R, Sriram S, Nandeesha P, Sankaranan M, Shivashankara KS (2023) Screening of Psidium species and their interspecific hybrid progenies for resistance to Fusarium oxysporum f. sp. psidii and southern root-knot nematode. S Afr J Bot 155:249–226

    Article  CAS  Google Scholar 

  • Wan WC, Leu LS (1999) Breeding guava resistant lines against Myxosporium wilt. Plant Protect Bull (Taipei) 41(2):149–154

    Google Scholar 

  • Watson L, Dallwitz MJ (2007) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. http://delta-intkey.com

  • Wikler C (1999) Distribuiçãogeográficamundial de Psidium cattleianum Sabine (Myrtaceae) e um cecidógeno com possibilidades de utilizaçãoemcontrolebiológico. Post-Graduation Forestry Course. Universidade Federal do Paraná. Doctoral thesis. 135 p

    Google Scholar 

  • Wunderlin RP, Hansen BE, Bridges EL (1995) (updated May 1996). Atlas of Florida vascular plants. http://www.usf.edu/~isb/projects/hb-atlas.html

  • Yadav AK (2006) Guava for valley state agricultural research station. http://www.ag.fvsu.edu/publicat/commoditysheets/fvsu003.htm

  • Yadav RC, Nagar AK, Pandey D, Shukla SK (2005) Promising guava (Psidium guajava L.) cultivars for North Indian conditions. In: I International Guava Symposium, vol 735, pp 91–94

    Google Scholar 

  • Zipori I, Shuker S, Dag A et al (2007) Guava breeding in Israel. Acta Hort 735:39–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vasugi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vasugi, C., Chaturvedi, K., Vishwakarma, P.K. (2023). Guava. In: Rajasekharan, P.E., Rao, V.R. (eds) Fruit and Nut Crops. Handbooks of Crop Diversity: Conservation and Use of Plant Genetic Resources. Springer, Singapore. https://doi.org/10.1007/978-981-99-1586-6_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1586-6_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1586-6

  • Online ISBN: 978-981-99-1586-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics