Skip to main content

Optimal Formation of UUV Groups Based on Shape Theory and Improved Ant Colony Algorithm Under Communication Delay

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1801))

  • 677 Accesses

Abstract

Aiming at the path optimization of formation of Unmanned Underwater Vehicle (UUV) in the process of formation reorganization. Firstly, this paper describes the UUV formation on the basis of shape theory. Based on the UUV kinematic model. The master-slave UUV consensus controller, under time-delay condition, is designed to realize the formation and maintenance of multiple UUVs. Secondly, the local update method is introduced into the pheromone update of the standard ant colony algorithm. The improved ant colony algorithm is used to quickly generate the shortest formation path. Finally, the simulation experiment was designed based on python. After the UUVs complete autonomous obstacle avoidance, the improved ant colony algorithm was introduced to realize the selection of the recombinant formation route, according to the initial coordinates of the UUV and the relative target point. The simulation results show that the designed tracking controller and the improved ant colony algorithm are effective in the formation maintenance and reorganization of multi-UUV formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang, X., et al.: Formation control for unmanned surface vessels: a game-theoretic approach. Asian J. Control 24(2), 498–509 (2022)

    Article  MathSciNet  Google Scholar 

  2. Xia, G., Zhang, Y., Zhang, W., et al.: Dual closed-loop robust adaptive fast integral terminal sliding mode formation finite-time control for multi-underactuated AUV system in three-dimensional space. Ocean Eng. 233, 108903 (2021)

    Article  Google Scholar 

  3. Rui, G., Chitre, M.: Cooperative positioning using range-only measurements between two AUVs. In: OCEANS’10 IEEE SYDNEY, pp. 1–6. IEEE (2010)

    Google Scholar 

  4. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, pp. 500–505. IEEE (1985)

    Google Scholar 

  5. Tan, K.H., Lewis, M.A.: Virtual structures for high-precision cooperative mobile robotic control. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS'96, pp. 132–139. IEEE (1996)

    Google Scholar 

  6. Leonard, N.E., Paley, D.A., Lekien, F., et al.: Collective motion, sensor networks, and ocean sampling. In: Proceedings of the IEEE, vol. 95, no. (1), pp. 48–74. IEEE (2007)

    Google Scholar 

  7. Zhao, S., Zelazo, D.: Bearing rigidity and almost global bearing-only formation stabilization. IEEE Trans. Autom. Control 61(5), 1255–1268 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lin, Z., Wang, L., Chen, Z., Fu, M., Han, Z.: Necessary and sufficient graphical conditions for affine formation control. IEEE Trans. Autom. Control 61(10), 2877–2891 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, Z., Wang, L., Han, Z., Fu, M.: Distributed formation control of multi-agent systems using complex laplacian. IEEE Trans. Autom. Control 59(7), 1765–1777 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, P.Q., Wang, Y., Wang, K., Liu, Z.Z.: A bilevel optimization approach for joint offloading decision and resource allocation in cooperative mobile edge computing. IEEE Trans. Cybern. 50(10), 4228–4241 (2019)

    Article  Google Scholar 

  11. Lin, J., He, C., Cheng, R.: Adaptive dropout for high-dimensional expensive multiobjective optimization. Complex Intell. Syst. 8(1), 271–285 (2021). https://doi.org/10.1007/s40747-021-00362-5

    Article  Google Scholar 

  12. Ren, W.: On consensus algorithms for double-integrator dynamics. IEEE Trans. Automat. Contr. 53(6), 1503–1509 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sun, Z., Park, M.C., Anderson, B.D.O., Ahn, H.-S.: Distributed stabilization control of rigid formations with prescribed orientation. Automatica 78, 250–257 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao, S., Zelazo, D.: Translational and scaling formation maneuver control via a bearing-based approach. IEEE Trans. Control Netw. Syst. 4(3), 429–438 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, T., Lin, Z., Zheng, R., Fu, M.: A barycentric coordinate-based approach to formation control under directed and switching sensing graphs. IEEE Trans. Cybern. 48(4), 1202–1215 (2017)

    Article  Google Scholar 

  16. Han, Z., Wang, L., Lin, Z., Zheng, R.: Formation control with size scaling via a complex Laplacian-based approach. IEEE Trans. Cybern. 46(10), 2348–2359 (2016)

    Article  Google Scholar 

  17. Derenick, J.C., Spletzer, J.R.: Convex optimization strategies for coordinating large-scale robot formations. IEEE Trans. Rob. 23(6), 1252–1259 (2007)

    Article  MATH  Google Scholar 

  18. Okamoto, A., Imasato, M., Hirao, S.C., et al.: Development of testbed AUV for formation control and its fundamental experiment in actual sea model basin. J. Robot. Mechatron. 33(1), 151–157 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, F., Zhao, Z., Guo, X. (2023). Optimal Formation of UUV Groups Based on Shape Theory and Improved Ant Colony Algorithm Under Communication Delay. In: Pan, L., Zhao, D., Li, L., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2022. Communications in Computer and Information Science, vol 1801. Springer, Singapore. https://doi.org/10.1007/978-981-99-1549-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1549-1_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1548-4

  • Online ISBN: 978-981-99-1549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics