Skip to main content

Hepatitis E Virus Life Cycle

  • Chapter
  • First Online:
Hepatitis E Virus

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1417))

Abstract

Hepatitis E virus (HEV) infects over 20 million people worldwide per year, leading to 30,000–40,000 deaths. In most cases HEV infection in a self-limited, acute illness. However, chronic infections could occur in immunocompromised individuals. Due to scarcity of robust cell culture models in vitro and genetic tractable animal models in vivo, the details of HEV life cycle, as well as its interaction with host cells still remain elusive, which dampens antivirals discovery. In this chapter, we present an update in the HEV infectious cycle steps: entry, genome replication/subgenomic RNA transcription, assembly, and release. Moreover, we discussed the future prospective on HEV research and illustrates important questions urgently to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALF:

Acute liver failure

CRISPR:

Clustered regularly interspaced short palindromic repeats

eHEV:

enveloped HEV

ELISA:

Enzyme-linked immunosorbent assay

ESCRT:

Endosomal sorting complexes required for transport

GOF:

Gain of function

GTP:

Guanosine triphosphate

HA:

Hemagglutinin

Hel:

Helicase

HEV:

Hepatitis E virus

HVR:

Proline-rich hypervariable region

LOF:

Loss of function

mAb:

Monoclonal antibody

MeT:

Methyltransferase

MVBs:

Multivesicular bodies

neHEV:

nonenveloped HEV

ORFs:

Open reading frames

PCP:

Papain-like cysteine protease

RdRp:

RNA-dependent RNA polymerase

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

UTR:

Untranslated region

VLPs:

Virus-like particles

References

  1. Nimgaonkar I, Ding Q, Schwartz RE, Ploss A (2018) Hepatitis E virus: advances and challenges. Nat Rev Gastroenterol Hepatol 15:96–110. https://doi.org/10.1038/nrgastro.2017.150

    Article  PubMed  Google Scholar 

  2. Jilani N et al (2007) Hepatitis E virus infection and fulminant hepatic failure during pregnancy. J Gastroenterol Hepatol 22:676–682. https://doi.org/10.1111/j.1440-1746.2007.04913.x

    Article  PubMed  Google Scholar 

  3. Clemente-Casares P, Ramos-Romero C, Ramirez-Gonzalez E, Mas A (2016) Hepatitis E virus in industrialized countries: the silent threat. Biomed Res Int 2016:9838041. https://doi.org/10.1155/2016/9838041

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bazerbachi F, Haffar S, Garg SK, Lake JR (2016) Extra-hepatic manifestations associated with hepatitis E virus infection: a comprehensive review of the literature. Gastroenterol Rep (Oxf) 4:1–15. https://doi.org/10.1093/gastro/gov042

    Article  PubMed  Google Scholar 

  5. Kamar N, Marion O, Abravanel F, Izopet J, Dalton HR (2016) Extrahepatic manifestations of hepatitis E virus. Liver Int 36:467–472. https://doi.org/10.1111/liv.13037

    Article  PubMed  Google Scholar 

  6. Zhang M, Purcell RH, Emerson SU (2001) Identification of the 5′ terminal sequence of the SAR-55 and MEX-14 strains of hepatitis E virus and confirmation that the genome is capped. J Med Virol 65:293–295. https://doi.org/10.1002/jmv.2032

    Article  CAS  PubMed  Google Scholar 

  7. Nair VP et al (2016) Endoplasmic reticulum stress induced synthesis of a novel viral factor mediates efficient replication of genotype-1 hepatitis E virus. PLoS Pathog 12:e1005521. https://doi.org/10.1371/journal.ppat.1005521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Surjit M, Jameel S, Lal SK (2004) The ORF2 protein of hepatitis E virus binds the 5′ region of viral RNA. J Virol 78:320–328. https://doi.org/10.1128/jvi.78.1.320-328.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guu TS et al (2009) Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Proc Natl Acad Sci U S A 106:12992–12997. https://doi.org/10.1073/pnas.0904848106

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ding Q et al (2017) Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles. Proc Natl Acad Sci U S A 114:1147–1152. https://doi.org/10.1073/pnas.1614955114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balayan MS et al (1983) Evidence for a virus in non-A, non-B hepatitis transmitted via the fecal-oral route. Intervirology 20:23–31. https://doi.org/10.1159/000149370

    Article  CAS  PubMed  Google Scholar 

  12. Marsh M, Helenius A (2006) Virus entry: open sesame. Cell 124:729–740. https://doi.org/10.1016/j.cell.2006.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maginnis MS (2018) Virus-receptor interactions: the key to cellular invasion. J Mol Biol 430:2590–2611. https://doi.org/10.1016/j.jmb.2018.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grove J, Marsh M (2011) The cell biology of receptor-mediated virus entry. J Cell Biol 195:1071–1082. https://doi.org/10.1083/jcb.201108131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takahashi M et al (2010) Hepatitis E Virus (HEV) strains in serum samples can replicate efficiently in cultured cells despite the coexistence of HEV antibodies: characterization of HEV virions in blood circulation. J Clin Microbiol 48:1112–1125. https://doi.org/10.1128/JCM.02002-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yin X, Ambardekar C, Lu Y, Feng Z (2016) Distinct entry mechanisms for nonenveloped and quasi-enveloped hepatitis E viruses. J Virol 90:4232–4242. https://doi.org/10.1128/JVI.02804-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takahashi M et al (2008) Monoclonal antibodies raised against the ORF3 protein of hepatitis E virus (HEV) can capture HEV particles in culture supernatant and serum but not those in feces. Arch Virol 153:1703–1713. https://doi.org/10.1007/s00705-008-0179-6

    Article  CAS  PubMed  Google Scholar 

  18. van Cuyck-Gandre H et al (1998) Experimental African HEV infection in cynomolgus macaques (Macaca fascicularis). J Med Virol 55:197–202. https://doi.org/10.1002/(sici)1096-9071(199807)55:3<197::aid-jmv3>3.0.co;2-x

    Article  PubMed  Google Scholar 

  19. Kalia M, Chandra V, Rahman SA, Sehgal D, Jameel S (2009) Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection. J Virol 83:12714–12724. https://doi.org/10.1128/JVI.00717-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holla P, Ahmad I, Ahmed Z, Jameel S (2015) Hepatitis E virus enters liver cells through a dynamin-2, clathrin and membrane cholesterol-dependent pathway. Traffic 16:398–416. https://doi.org/10.1111/tra.12260

    Article  CAS  PubMed  Google Scholar 

  21. Kapur N, Thakral D, Durgapal H, Panda SK (2012) Hepatitis E virus enters liver cells through receptor-dependent clathrin-mediated endocytosis. J Viral Hepat 19:436–448. https://doi.org/10.1111/j.1365-2893.2011.01559.x

    Article  CAS  PubMed  Google Scholar 

  22. Cagno V, Tseligka ED, Jones ST, Tapparel C (2019) Heparan sulfate proteoglycans and viral attachment: true receptors or adaptation bias? Viruses 11:596. https://doi.org/10.3390/v11070596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leistner CM, Gruen-Bernhard S, Glebe D (2008) Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol 10:122–133. https://doi.org/10.1111/j.1462-5822.2007.01023.x

    Article  CAS  PubMed  Google Scholar 

  24. Shukla D et al (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22. https://doi.org/10.1016/s0092-8674(00)80058-6

    Article  CAS  PubMed  Google Scholar 

  25. Patel M et al (1993) Cell-surface heparan sulfate proteoglycan mediates HIV-1 infection of T- cell lines. AIDS Res Hum Retrovir 9:167–174. https://doi.org/10.1089/aid.1993.9.167

    Article  CAS  PubMed  Google Scholar 

  26. Tan CW, Poh CL, Sam IC, Chan YF (2013) Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol 87:611–620. https://doi.org/10.1128/JVI.02226-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pinon JD et al (2003) Human T-cell leukemia virus type 1 envelope glycoprotein gp46 interacts with cell surface heparan sulfate proteoglycans. J Virol 77:9922–9930. https://doi.org/10.1128/jvi.77.18.9922-9930.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D’Souza AA, Devarajan PV (2015) Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J Control Release 203:126–139. https://doi.org/10.1016/j.jconrel.2015.02.022

    Article  CAS  PubMed  Google Scholar 

  29. Harris RL, van den Berg CW, Bowen DJ (2012) ASGR1 and ASGR2, the genes that encode the asialoglycoprotein receptor (Ashwell Receptor), are expressed in peripheral blood monocytes and show interindividual differences in transcript profile. Mol Biol Int 2012:283974. https://doi.org/10.1155/2012/283974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grewal PK (2010) The Ashwell-Morell receptor. Methods Enzymol 479:223–241. https://doi.org/10.1016/S0076-6879(10)79013-3

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L et al (2016) Asialoglycoprotein receptor facilitates infection of PLC/PRF/5 cells by HEV through interaction with ORF2. J Med Virol 88:2186–2195. https://doi.org/10.1002/jmv.24570

    Article  CAS  PubMed  Google Scholar 

  32. Haas IG (1994) BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia 50:1012–1020. https://doi.org/10.1007/BF01923455

    Article  CAS  PubMed  Google Scholar 

  33. Jindadamrongwech S, Thepparit C, Smith DR (2004) Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149:915–927. https://doi.org/10.1007/s00705-003-0263-x

    Article  CAS  PubMed  Google Scholar 

  34. Khongwichit S et al (2021) A functional interaction between GRP78 and Zika virus E protein. Sci Rep 11:393. https://doi.org/10.1038/s41598-020-79803-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nain M et al (2017) GRP78 is an important host factor for Japanese encephalitis virus entry and replication in mammalian cells. J Virol 91:e02274. https://doi.org/10.1128/JVI.02274-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu H et al (2011) Homology model and potential virus-capsid binding site of a putative HEV receptor Grp78. J Mol Model 17:987–995. https://doi.org/10.1007/s00894-010-0794-5

    Article  CAS  PubMed  Google Scholar 

  37. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8:215. https://doi.org/10.1186/gb-2007-8-5-215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shiota T et al (2019) Integrin alpha3 is involved in non-enveloped hepatitis E virus infection. Virology 536:119–124. https://doi.org/10.1016/j.virol.2019.07.025

    Article  CAS  PubMed  Google Scholar 

  39. Martinez LO et al (2003) Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421:75–79. https://doi.org/10.1038/nature01250

    Article  CAS  PubMed  Google Scholar 

  40. Burrell HE et al (2005) Human keratinocytes release ATP and utilize three mechanisms for nucleotide interconversion at the cell surface. J Biol Chem 280:29667–29676. https://doi.org/10.1074/jbc.M505381200

    Article  CAS  PubMed  Google Scholar 

  41. Ahmed Z, Holla P, Ahmad I, Jameel S (2016) The ATP synthase subunit β (ATP5B) is an entry factor for the hepatitis E virus. bioRxiv

    Google Scholar 

  42. Li H et al (2019) Chicken organic anion-transporting polypeptide 1A2, a novel avian hepatitis E virus (HEV) ORF2-interacting protein, is involved in avian HEV infection. J Virol 93:e02205. https://doi.org/10.1128/JVI.02205-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan M et al (2021) Cell division control protein 42 interacts with hepatitis E virus capsid protein and participates in hepatitis E virus infection. Front Microbiol 12:775083. https://doi.org/10.3389/fmicb.2021.775083

    Article  PubMed  PubMed Central  Google Scholar 

  44. Allweiss L et al (2016) Human liver chimeric mice as a new model of chronic hepatitis E virus infection and preclinical drug evaluation. J Hepatol 64:1033–1040. https://doi.org/10.1016/j.jhep.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  45. van de Garde MD et al (2016) Hepatitis E virus (HEV) genotype 3 infection of human liver chimeric mice as a model for chronic HEV infection. J Virol 90:4394–4401. https://doi.org/10.1128/JVI.00114-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chapuy-Regaud S et al (2017) Characterization of the lipid envelope of exosome encapsulated HEV particles protected from the immune response. Biochimie 141:70–79. https://doi.org/10.1016/j.biochi.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  47. Jemielity S et al (2013) TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog 9:e1003232. https://doi.org/10.1371/journal.ppat.1003232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan H et al (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. elife 1:e00049. https://doi.org/10.7554/eLife.00049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pileri P et al (1998) Binding of hepatitis C virus to CD81. Science 282:938–941. https://doi.org/10.1126/science.282.5390.938

    Article  CAS  PubMed  Google Scholar 

  50. Ploss A et al (2009) Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457:882–886. https://doi.org/10.1038/nature07684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ding Q et al (2017) Mice expressing minimally humanized CD81 and occludin genes support hepatitis C virus uptake in vivo. J Virol 91:e01799. https://doi.org/10.1128/JVI.01799-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Berns K et al (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437. https://doi.org/10.1038/nature02371

    Article  CAS  PubMed  Google Scholar 

  53. Carette JE et al (2009) Haploid genetic screens in human cells identify host factors used by pathogens. Science 326:1231–1235. https://doi.org/10.1126/science.1178955

    Article  CAS  PubMed  Google Scholar 

  54. Shalem O et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

  55. Ma H et al (2020) LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature 588:308–314. https://doi.org/10.1038/s41586-020-2915-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang R et al (2018) Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 557:570–574. https://doi.org/10.1038/s41586-018-0121-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pillay S et al (2016) An essential receptor for adeno-associated virus infection. Nature 530:108–112. https://doi.org/10.1038/nature16465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ganaie SS et al (2021) Lrp1 is a host entry factor for Rift Valley fever virus. Cell 184:5163–5178.e5124. https://doi.org/10.1016/j.cell.2021.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kabrane-Lazizi Y, Meng XJ, Purcell RH, Emerson SU (1999) Evidence that the genomic RNA of hepatitis E virus is capped. J Virol 73:8848–8850. https://doi.org/10.1128/JVI.73.10.8848-8850.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Subramani C et al (2018) Host-virus protein interaction network reveals the involvement of multiple host processes in the life cycle of hepatitis E virus. mSystems 3:e00135. https://doi.org/10.1128/mSystems.00135-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou X et al (2015) Requirement of the eukaryotic translation initiation factor 4F complex in hepatitis E virus replication. Antivir Res 124:11–19. https://doi.org/10.1016/j.antiviral.2015.10.016

    Article  CAS  PubMed  Google Scholar 

  62. Graff J, Torian U, Nguyen H, Emerson SU (2006) A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus. J Virol 80:5919–5926. https://doi.org/10.1128/JVI.00046-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang XQ, Rothnagel JA (2004) 5′-untranslated regions with multiple upstream AUG codons can support low-level translation via leaky scanning and reinitiation. Nucleic Acids Res 32:1382–1391. https://doi.org/10.1093/nar/gkh305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yin X et al (2018) Origin, antigenicity, and function of a secreted form of ORF2 in hepatitis E virus infection. Proc Natl Acad Sci U S A 115:4773–4778. https://doi.org/10.1073/pnas.1721345115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Koonin EV et al (1992) Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. Proc Natl Acad Sci U S A 89:8259–8263. https://doi.org/10.1073/pnas.89.17.8259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. LeDesma R, Nimgaonkar I, Ploss A (2019) Hepatitis E virus replication. Viruses 11:719. https://doi.org/10.3390/v11080719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Magden J et al (2001) Virus-specific mRNA capping enzyme encoded by hepatitis E virus. J Virol 75:6249–6255. https://doi.org/10.1128/JVI.75.14.6249-6255.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Emerson SU et al (2001) Recombinant hepatitis E virus genomes infectious for primates: importance of capping and discovery of a cis-reactive element. Proc Natl Acad Sci U S A 98:15270–15275. https://doi.org/10.1073/pnas.251555098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sehgal D, Thomas S, Chakraborty M, Jameel S (2006) Expression and processing of the hepatitis E virus ORF1 nonstructural polyprotein. Virol J 3:38. https://doi.org/10.1186/1743-422X-3-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Parvez MK (2013) Molecular characterization of hepatitis E virus ORF1 gene supports a papain- like cysteine protease (PCP)-domain activity. Virus Res 178:553–556. https://doi.org/10.1016/j.virusres.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  71. Paliwal D, Panda SK, Kapur N, Varma SPK, Durgapal H (2014) Hepatitis E virus (HEV) protease: a chymotrypsin-like enzyme that processes both non-structural (pORF1) and capsid (pORF2) protein. J Gen Virol 95:1689–1700. https://doi.org/10.1099/vir.0.066142-0

    Article  CAS  PubMed  Google Scholar 

  72. Ju X et al (2020) Identification of functional cis-acting RNA elements in the hepatitis E virus genome required for viral replication. PLoS Pathog 16:e1008488. https://doi.org/10.1371/journal.ppat.1008488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Szkolnicka D et al (2019) Recombinant hepatitis E viruses harboring tags in the ORF1 protein. J Virol 93:e00459. https://doi.org/10.1128/JVI.00459-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Smith DB et al (2012) Evolution of the hepatitis E virus hypervariable region. J Gen Virol 93:2408–2418. https://doi.org/10.1099/vir.0.045351-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pudupakam RS et al (2011) Mutational analysis of the hypervariable region of hepatitis e virus reveals its involvement in the efficiency of viral RNA replication. J Virol 85:10031–10040. https://doi.org/10.1128/JVI.00763-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nguyen HT et al (2012) A naturally occurring human/hepatitis E recombinant virus predominates in serum but not in faeces of a chronic hepatitis E patient and has a growth advantage in cell culture. J Gen Virol 93:526–530. https://doi.org/10.1099/vir.0.037259-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shukla P et al (2012) Adaptation of a genotype 3 hepatitis E virus to efficient growth in cell culture depends on an inserted human gene segment acquired by recombination. J Virol 86:5697–5707. https://doi.org/10.1128/JVI.00146-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shukla P et al (2011) Cross-species infections of cultured cells by hepatitis E virus and discovery of an infectious virus-host recombinant. Proc Natl Acad Sci U S A 108:2438–2443. https://doi.org/10.1073/pnas.1018878108

    Article  PubMed  PubMed Central  Google Scholar 

  79. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951. https://doi.org/10.1002/j.1460-2075.1982.tb01276.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Caruthers JM, McKay DB (2002) Helicase structure and mechanism. Curr Opin Struct Biol 12:123–133. https://doi.org/10.1016/s0959-440x(02)00298-1

    Article  CAS  PubMed  Google Scholar 

  81. Kadare G, Haenni AL (1997) Virus-encoded RNA helicases. J Virol 71:2583–2590. https://doi.org/10.1128/JVI.71.4.2583-2590.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mhaindarkar V, Sharma K, Lole KS (2014) Mutagenesis of hepatitis E virus helicase motifs: effects on enzyme activity. Virus Res 179:26–33. https://doi.org/10.1016/j.virusres.2013.11.022

    Article  CAS  PubMed  Google Scholar 

  83. Ju X, Ding Q (2019) Hepatitis E virus assembly and release. Viruses 11:539. https://doi.org/10.3390/v11060539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Agrawal S, Gupta D, Panda SK (2001) The 3′ end of hepatitis E virus (HEV) genome binds specifically to the viral RNA-dependent RNA polymerase (RdRp). Virology 282:87–101. https://doi.org/10.1006/viro.2000.0819

    Article  CAS  PubMed  Google Scholar 

  85. Cao D, Huang YW, Meng XJ (2010) The nucleotides on the stem-loop RNA structure in the junction region of the hepatitis E virus genome are critical for virus replication. J Virol 84:13040–13044. https://doi.org/10.1128/JVI.01475-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ding Q et al (2018) Identification of the intragenomic promoter controlling hepatitis E virus subgenomic RNA transcription. MBio 9:e00769. https://doi.org/10.1128/mBio.00769-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Haldipur B, Bhukya PL, Arankalle V, Lole K (2018) Positive regulation of hepatitis E virus replication by microRNA-122. J Virol 92:e01999. https://doi.org/10.1128/JVI.01999-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kanade GD, Pingale KD, Karpe YA (2019) Protein interactions network of hepatitis E virus RNA and polymerase with host proteins. Front Microbiol 10:2501. https://doi.org/10.3389/fmicb.2019.02501

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pingale KD, Kanade GD, Karpe YA (2020) Heterogeneous nuclear ribonucleoproteins participate in hepatitis E virus replication. J Mol Biol 432:2369–2387. https://doi.org/10.1016/j.jmb.2020.02.025

    Article  CAS  PubMed  Google Scholar 

  90. Montpellier C et al (2018) Hepatitis E virus lifecycle and identification of 3 forms of the ORF2 capsid protein. Gastroenterology 154:211-223 e218. https://doi.org/10.1053/j.gastro.2017.09.020

    Article  CAS  Google Scholar 

  91. Fu RM, Decker CC, Dao Thi VL (2019) Cell culture models for hepatitis E virus. Viruses 11:608. https://doi.org/10.3390/v11070608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Meister TL, Bruening J, Todt D, Steinmann E (2019) Cell culture systems for the study of hepatitis E virus. Antivir Res 163:34–49. https://doi.org/10.1016/j.antiviral.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  93. Xing L et al (1999) Recombinant hepatitis E capsid protein self-assembles into a dual-domain T = 1 particle presenting native virus epitopes. Virology 265:35–45. https://doi.org/10.1006/viro.1999.0005

    Article  CAS  PubMed  Google Scholar 

  94. Li TC et al (2005) Essential elements of the capsid protein for self-assembly into empty virus- like particles of hepatitis E virus. J Virol 79:12999–13006. https://doi.org/10.1128/JVI.79.20.12999-13006.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yamashita T et al (2009) Biological and immunological characteristics of hepatitis E virus-like particles based on the crystal structure. Proc Natl Acad Sci U S A 106:12986–12991. https://doi.org/10.1073/pnas.0903699106

    Article  PubMed  PubMed Central  Google Scholar 

  96. Li TC et al (1997) Expression and self-assembly of empty virus-like particles of hepatitis E virus. J Virol 71:7207–7213. https://doi.org/10.1128/JVI.71.10.7207-7213.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xing L et al (2010) Structure of hepatitis E virion-sized particle reveals an RNA-dependent viral assembly pathway. J Biol Chem 285:33175–33183. https://doi.org/10.1074/jbc.M110.106336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mori Y, Matsuura Y (2011) Structure of hepatitis E viral particle. Virus Res 161:59–64. https://doi.org/10.1016/j.virusres.2011.03.015

    Article  CAS  PubMed  Google Scholar 

  99. Li S et al (2009) Dimerization of hepatitis E virus capsid protein E2s domain is essential for virus- host interaction. PLoS Pathog 5:e1000537. https://doi.org/10.1371/journal.ppat.1000537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gokhale NS et al (2016) N6-Methyladenosine in flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20:654–665. https://doi.org/10.1016/j.chom.2016.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zafrullah M, Ozdener MH, Panda SK, Jameel S (1997) The ORF3 protein of hepatitis E virus is a phosphoprotein that associates with the cytoskeleton. J Virol 71:9045–9053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Korkaya H et al (2001) The ORF3 protein of hepatitis E virus binds to Src homology 3 domains and activates MAPK. J Biol Chem 276:42389–42400. https://doi.org/10.1074/jbc.M101546200

    Article  CAS  PubMed  Google Scholar 

  103. Parvez MK, Al-Dosari MS (2015) Evidence of MAPK-JNK1/2 activation by hepatitis E virus ORF3 protein in cultured hepatoma cells. Cytotechnology 67:545–550. https://doi.org/10.1007/s10616-014-9785-1

    Article  CAS  PubMed  Google Scholar 

  104. Roy AK, Korkaya H, Oberoi R, Lal SK, Jameel S (2004) The hepatitis E virus open reading frame 3 protein activates ERK through binding and inhibition of the MAPK phosphatase. J Biol Chem 279:28345–28357. https://doi.org/10.1074/jbc.M400457200

    Article  CAS  Google Scholar 

  105. Ratra R, Kar-Roy A, Lal SK (2009) ORF3 protein of hepatitis E virus interacts with the B beta chain of fibrinogen resulting in decreased fibrinogen secretion from HuH-7 cells. J Gen Virol 90:1359–1370. https://doi.org/10.1099/vir.0.009274-0

    Article  CAS  PubMed  Google Scholar 

  106. Nan YC et al (2014) Enhancement of interferon induction by ORF3 product of hepatitis E virus. J Virol 88:8696–8705. https://doi.org/10.1128/Jvi.01228-14

    Article  PubMed  PubMed Central  Google Scholar 

  107. Emerson SU, Nguyen H, Torian U, Purcell RH (2006) ORF3 protein of hepatitis E virus is not required for replication, virion assembly, or infection of hepatoma cells in vitro. J Virol 80:10457–10464. https://doi.org/10.1128/JVI.00892-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yamada K et al (2009) ORF3 protein of hepatitis E virus is essential for virion release from infected cells. J Gen Virol 90:1880–1891. https://doi.org/10.1099/vir.0.010561-0

    Article  CAS  PubMed  Google Scholar 

  109. Tyagi S, Korkaya H, Zafrullah M, Jameel S, Lal SK (2002) The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein, ORF2. J Biol Chem 277:22759–22767. https://doi.org/10.1074/jbc.M200185200

    Article  CAS  PubMed  Google Scholar 

  110. Kannan H, Fan S, Patel D, Bossis I, Zhang YJ (2009) The hepatitis E virus open reading frame 3 product interacts with microtubules and interferes with their dynamics. J Virol 83:6375–6382. https://doi.org/10.1128/JVI.02571-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Surjit M, Oberoi R, Kumar R, Lal SK (2006) Enhanced alpha1 microglobulin secretion from Hepatitis E virus ORF3-expressing human hepatoma cells is mediated by the tumor susceptibility gene 101. J Biol Chem 281:8135–8142. https://doi.org/10.1074/jbc.M509568200

    Article  CAS  PubMed  Google Scholar 

  112. Piper RC, Lehner PJ (2011) Endosomal transport via ubiquitination. Trends Cell Biol 21:647–655. https://doi.org/10.1016/j.tcb.2011.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Haglund K, Di Fiore PP, Dikic I (2003) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28:598–603. https://doi.org/10.1016/j.tibs.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  114. Yin X, Li X, Feng Z (2016) Role of envelopment in the HEV life cycle. Viruses 8:229. https://doi.org/10.3390/v8080229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Qi Y et al (2015) Hepatitis E virus produced from cell culture has a lipid envelope. PLoS One 10:e0132503. https://doi.org/10.1371/journal.pone.0132503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nagashima S et al (2017) Characterization of the quasi-enveloped hepatitis E virus particles released by the cellular exosomal pathway. J Virol 91:e00822. https://doi.org/10.1128/JVI.00822-17

    Article  PubMed  PubMed Central  Google Scholar 

  117. Nagashima S et al (2014) The membrane on the surface of hepatitis E virus particles is derived from the intracellular membrane and contains trans-Golgi network protein 2. Arch Virol 159:979–991. https://doi.org/10.1007/s00705-013-1912-3

    Article  CAS  PubMed  Google Scholar 

  118. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nagashima S et al (2014) Hepatitis E virus egress depends on the exosomal pathway, with secretory exosomes derived from multivesicular bodies. J Gen Virol 95:2166–2175. https://doi.org/10.1099/vir.0.066910-0

    Article  CAS  PubMed  Google Scholar 

  120. Gouttenoire J et al (2018) Palmitoylation mediates membrane association of hepatitis E virus ORF3 protein and is required for infectious particle secretion. PLoS Pathog 14:e1007471. https://doi.org/10.1371/journal.ppat.1007471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gissen P, Arias IM (2015) Structural and functional hepatocyte polarity and liver disease. J Hepatol 63:1023–1037. https://doi.org/10.1016/j.jhep.2015.06.015

    Article  PubMed  PubMed Central  Google Scholar 

  122. Capelli N et al (2019) Vectorial release of hepatitis E virus in polarized human hepatocytes. J Virol 93:e01207. https://doi.org/10.1128/JVI.01207-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Emerson SU et al (2010) Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein and requires an intact PXXP motif. J Virol 84:9059–9069. https://doi.org/10.1128/JVI.00593-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Khuroo MS, Khuroo MS, Khuroo NS (2016) Hepatitis E: discovery, global impact, control and cure. World J Gastroenterol 22:7030–7045. https://doi.org/10.3748/wjg.v22.i31.7030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wissing MH, Bruggemann Y, Steinmann E, Todt D (2021) Virus-host cell interplay during hepatitis E virus infection. Trends Microbiol 29:309–319. https://doi.org/10.1016/j.tim.2020.07.002

    Article  CAS  PubMed  Google Scholar 

  126. Tao YJ, Ye Q (2010) RNA virus replication complexes. PLoS Pathog 6:e1000943. https://doi.org/10.1371/journal.ppat.1000943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ju, X., Dong, L., Ding, Q. (2023). Hepatitis E Virus Life Cycle. In: Wang, Y. (eds) Hepatitis E Virus. Advances in Experimental Medicine and Biology, vol 1417. Springer, Singapore. https://doi.org/10.1007/978-981-99-1304-6_10

Download citation

Publish with us

Policies and ethics