Skip to main content

Designing Studies in Pharmaceutical and Medicinal Chemistry

  • Chapter
  • First Online:
The Quintessence of Basic and Clinical Research and Scientific Publishing

Abstract

The discovery of medicine started years ago with the use of medicinal plant parts for the benefit or improvement of physiological conditions. The traditional uses of medicinal plants grew tremendously with Indian medicine and the Chinese medicine system. Later on, with time, researchers tried to isolate and synthesize the lead molecule of a natural product to increase its potency. The major source of drugs was plants, microorganisms, animals, and marine. With changes in time and environment, the need for quick recovery from a disease condition was felt for many reasons and thus synthetic-based drugs came to market with many regulations. In the initial days, the cost of drug development was a very high and costly process which may go up to $400-$600 million with the investment of 10-12 years of time. With the development of computer programs, some part of the drug discovery process was made easy with different software and programs. Many in-silico methods were developed by many researchers and scientists which boosted the drug design method and reduced the cost and time. The two main approaches of computer-aided drug design i.e., structure-based drug design and ligand-based drug design changed the process of drug discovery completely. Different visualization techniques of the 3D structure of a protein helped the researchers to understand the nature of the protein and the way to inhibit that protein and receptor. Structure-based drug design tools like homology modeling, molecular docking, and de-novo drug design helped in the discovery of drug molecules based on the detailed structure of protein whereas the structure-based drug design tools like pharmacophore mapping and QSAR techniques contributed to the discovery of drug molecules based on the nature of the previously reported drug and lead molecules. The in-silico ADMET properties prediction of a molecule based on the structural basis of the compound with the application of different rules like Lipinski's rule of five, Veber's rule, Ghosh rule, etc helped to develop a drug molecule with better pharmacokinetic and pharmacodynamic properties, which resists the easy rejection of a developed molecule in the clinical trials. Later with the advancement of computers, several artificial intelligence approaches were developed such as machine learning and deep learning. These techniques have many applications such as drug-target interactions, drug repurposing, prediction of synthesis and retrosynthesis, etc. Illustration about all these aspects is presented in a systematic way in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li J, Lu C, Jiang M, Niu X, Guo H, Li L et al (2012) Traditional chinese medicine-based network pharmacology could lead to new multicompound drug discovery. Evid Based Complement Alternat Med 2012:149762

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huang H-J, Yu HW, Chen C-Y, Hsu C-H, Chen H-Y, Lee K-J et al (2010) Current developments of computer-aided drug design. J Taiwan Inst Chem Eng 41(6):623–635

    Article  CAS  Google Scholar 

  3. Cheng F, Li W, Liu G, Tang Y (2013) In silico ADMET prediction: recent advances, current challenges and future trends. Curr Top Med Chem 13(11):1273–1289

    Article  CAS  PubMed  Google Scholar 

  4. Cassidy JW, Taylor B (2020) Artificial intelligence in oncology drug discovery and development. IntechOpen. https://doi.org/10.5772/intechopen.92799

  5. Jachak SM, Saklani A (2007) Challenges and opportunities in drug discovery from plants. Curr Sci 92:1251–1257

    CAS  Google Scholar 

  6. Khan SR, Al Rijjal D, Piro A, Wheeler MB (2021) AI-integration and plant-based traditional medicine for drug discovery. Drug Discov Today 26:982

    Article  CAS  PubMed  Google Scholar 

  7. Süntar I (2020) Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem Rev 19(5):1199–1209

    Article  Google Scholar 

  8. Feng Y, Wu Z, Zhou X, Zhou Z, Fan W (2006) Knowledge discovery in traditional Chinese medicine: state of the art and perspectives. Artif Intell Med 38(3):219–236

    Article  PubMed  Google Scholar 

  9. Vaidya PB, Vaidya BS, Vaidya SK (2010) Response to Ayurvedic therapy in the treatment of migraine without aura. Int J Ayurveda Res 1(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ansari A (2010) Unani system of medicine and development of its materia medica. Iran J Pharm Res 3:21–22

    Google Scholar 

  11. Loukas M, Lanteri A, Ferrauiola J, Tubbs RS, Maharaja G, Shoja MM, Yadav A, Rao VC (2010) Anatomy in ancient India: a focus on the Susruta Samhita. J Anat 217(6):646–650

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sucher NJ (2013) The application of Chinese medicine to novel drug discovery. Expert Opin Drug Discovery 8(1):21–34

    Article  CAS  Google Scholar 

  13. Reid D (1996) The Shambhala guide to traditional Chinese medicine. Shambhala Publications, Boulder

    Google Scholar 

  14. Zhou J, Xie G, Yan X (2011) Encyclopedia of traditional Chinese medicines-molecular structures, pharmacological activities, natural sources and applications. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16744-7

  15. Chan E, Tan M, Xin J, Sudarsanam S, Johnson DE (2010) Interactions between traditional Chinese medicines and Western. Curr Opin Drug Discov Devel 13(1):50–65

    CAS  PubMed  Google Scholar 

  16. Yamgar RS, Sawant SS (2015) An update on drug discovery and natural products. Asian J Pharma Sci Technol 5(3):137–155

    Google Scholar 

  17. Forshaw R (2014) Before Hippocrates. Healing practices in ancient Egypt. In: Medicine, healing and performance. Oxbow Books, Oxford, pp 25–41

    Chapter  Google Scholar 

  18. Jouanna J (2012) Egyptian medicine and Greek medicine. In: Greek medicine from Hippocrates to Galen. Brill, Leiden, pp 1–20

    Google Scholar 

  19. Hartmann A (2016) Back to the roots–dermatology in ancient Egyptian medicine. J Dtsch Dermatol Ges 14(4):389–396

    PubMed  Google Scholar 

  20. Metwaly AM, Ghoneim MM, Eissa IH, Elsehemy IA, Mostafa AE, Hegazy MM et al (2021) Traditional ancient Egyptian medicine: a review. Saudi J Biol Sci 28(10):5823–5832

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kirsch DB (2011) There and back again: a current history of sleep medicine. Chest 139(4):939–946

    Article  PubMed  Google Scholar 

  22. Watts HE (2014) The plight of the wounded healer: unraveling pain as a precursor to practicing potent psychotherapy. Pacifica Graduate Institute, Carpinteria

    Google Scholar 

  23. Prioreschi P (1996) A history of medicine: Roman medicine. Edwin Mellen Press, Lewiston

    Google Scholar 

  24. Webster HK, Lehnert EK (1994) Chemistry of artemisinin: an overview. Trans R Soc Trop Med Hyg 88:27–29

    Article  CAS  Google Scholar 

  25. Singh L, Lewis A, Field M, Hughes J, Woodruff G (1991) Evidence for an involvement of the brain cholecystokinin B receptor in anxiety. Proc Natl Acad Sci 88(4):1130–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Woodruff G, Hughes J (1991) Cholecystokinin antagonists. Annu Rev Pharmacol Toxicol 31(1):469–501

    Article  CAS  PubMed  Google Scholar 

  27. Amedei A, D’Elios M (2012) New therapeutic approaches by using microorganism-derived compounds. Curr Med Chem 19(22):3822–3840

    Article  CAS  PubMed  Google Scholar 

  28. Birari RB, Bhutani KK (2007) Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today 12(19-20):879–889

    Article  CAS  PubMed  Google Scholar 

  29. Lu Q, Yan S, Sun H, Wang W, Li Y, Yang X et al (2015) Akt inhibition attenuates rasfonin-induced autophagy and apoptosis through the glycolytic pathway in renal cancer cells. Cell Death Dis 6(12):e2005-e

    Article  Google Scholar 

  30. Gerwick WH, Proteau PJ, Nagle DG, Hamel E, Blokhin A, Slate DL (1994) Structure of curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59(6):1243–1245

    Article  CAS  Google Scholar 

  31. Conlon JM (2004) The therapeutic potential of antimicrobial peptides from frog skin. Rev Med Microbiol 15(1):17–25

    Article  Google Scholar 

  32. Angerer K (2011) Frog tales–on poison dart frogs, epibatidine, and the sharing of biodiversity. Innovation 24(3):353–369

    Google Scholar 

  33. Singh D, Tripathi A, Kumar G (2012) An overview of computational approaches in structure based drug design. Nepal J Biotechnol 2(1):53–61

    Article  Google Scholar 

  34. Nag A, Dey B (2011) Computer-aided drug design and delivery systems. McGraw-Hill Education, New York

    Google Scholar 

  35. Ferenczy G (1998) A SZERKEZET-ALAPU GYOGYSZERTERVEZES MODSZEREI. Acta Pharm Hung 68(1):21–31

    CAS  PubMed  Google Scholar 

  36. Navia MA, Peattie DA (1993) Structure-based drug design: applications in immunopharmacology and immunosuppression. Immunol Today 14(6):296–302

    Article  CAS  PubMed  Google Scholar 

  37. Oakley AJ, Wilce MC (2000) Macromolecular crystallography as a tool for investigating drug, enzyme and receptor interactions. Clin Exp Pharmacol Physiol 27(3):145–151

    Article  CAS  PubMed  Google Scholar 

  38. Meng EC, Gschwend DA, Blaney JM, Kuntz ID (1993) Orientational sampling and rigid-body minimization in molecular docking. Proteins 17(3):266–278

    Article  CAS  PubMed  Google Scholar 

  39. Fitzgerald PM (1993) HIV protease-ligand complexes. Curr Opin Struct Biol 3(6):868–874

    Article  CAS  Google Scholar 

  40. Rutenber E, Fauman EB, Keenan RJ, Fong S, Furth PS, de Montellano PO et al (1993) Structure of a non-peptide inhibitor complexed with HIV-1 protease. Developing a cycle of structure-based drug design. J Biol Chem 268(21):15343–15346

    Article  CAS  PubMed  Google Scholar 

  41. Kontoyianni M (2017) Docking and virtual screening in drug discovery. In: Proteomics for drug discovery. Springer, New York, pp 255–266

    Chapter  Google Scholar 

  42. Gashaw I, Ellinghaus P, Sommer A, Asadullah K (2011) What makes a good drug target? Drug Discov Today 16(23-24):1037–1043

    Article  CAS  PubMed  Google Scholar 

  43. Chettri S, Sasmal P, Adon T, Kumar BS, Kumar BP, Raghavendra NM (2023) Computational analysis of natural product B-Raf inhibitors. J Mol Graph Model 118:108340

    Article  CAS  PubMed  Google Scholar 

  44. Pathak RK, Singh DB, Sagar M, Baunthiyal M, Kumar A (2020) Computational approaches in drug discovery and design. In: Computer-aided drug design. Springer, New York, pp 1–21

    Google Scholar 

  45. Stank A, Kokh DB, Fuller JC, Wade RC (2016) Protein binding pocket dynamics. Acc Chem Res 49(5):809–815

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt T, Haas J, Cassarino TG, Schwede T (2011) Assessment of ligand-binding residue predictions in CASP9. Proteins 79(S10):126–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu B, Liu B, Liu F, Wang X (2014) Protein binding site prediction by combining hidden markov support vector machine and profile-based propensities. ScientificWorldJournal 2014:464093

    PubMed  PubMed Central  Google Scholar 

  48. Sasmal P, Babasahib SK, Kumar BP, Raghavendra NM (2022) Biphenyl-based small molecule inhibitors: novel cancer immunotherapeutic agents targeting PD-1/PD-L1 interaction. Biorg Med Chem 73:117001

    Article  CAS  Google Scholar 

  49. Bodade R, Beedkar S, Manwar A, Khobragade C (2010) Homology modeling and docking study of xanthine oxidase of Arthrobacter sp. XL26. Int J Biol Macromol 47(2):298–303

    Article  CAS  PubMed  Google Scholar 

  50. Pathak RK, Taj G, Pandey D, Kasana VK, Baunthiyal M, Kumar A (2016) Molecular modeling and docking studies of phytoalexin(s) with pathogenic protein(s) as molecular targets for designing the derivatives with anti-fungal action on ‘Alternaria’ spp. of ‘Brassica’. Plant Omics 9(3):172–183

    Article  CAS  Google Scholar 

  51. Hekkelman ML, te Beek TA, Pettifer S, Thorne D, Attwood TK, Vriend G (2010) WIWS: a protein structure bioinformatics Web service collection. Nucleic Acids Res 38(suppl_2):W719–WW23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bagaria A, Jaravine V, Huang YJ, Montelione GT, Güntert P (2012) Protein structure validation by generalized linear model root-mean-square deviation prediction. Protein Sci 21(2):229–238

    Article  CAS  PubMed  Google Scholar 

  53. Mutharasappan N, Ravi Rao G, Mariadasse R, Poopandi S, Mathimaran A, Dhamodharan P et al (2020) Experimental and computational methods to determine protein structure and stability. In: Frontiers in protein structure, function, and dynamics. Springer, New York, pp 23–55

    Chapter  Google Scholar 

  54. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20(7):13384–13421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang S-Y, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11(8):3016–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wildman SA (2001) Three-dimensional quantitative structure-activity relationships based on atomic property descriptors. University of Michigan, Ann Arbor

    Google Scholar 

  57. Schneider G, Böhm H-J (2002) Virtual screening and fast automated docking methods. Drug Discov Today 7:64–70

    Article  CAS  PubMed  Google Scholar 

  58. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3):470–489

    Article  CAS  PubMed  Google Scholar 

  59. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161(2):269–288

    Article  CAS  PubMed  Google Scholar 

  60. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9(1):1–5

    Article  CAS  PubMed  Google Scholar 

  61. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10(4):293–304

    Article  CAS  PubMed  Google Scholar 

  62. Kollman P (1993) Free energy calculations: applications to chemical and biochemical phenomena. Chem Rev 93(7):2395–2417

    Article  CAS  Google Scholar 

  63. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897

    Article  CAS  PubMed  Google Scholar 

  64. Gohlke H, Kiel C, Case DA (2003) Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes. J Mol Biol 330(4):891–913

    Article  CAS  PubMed  Google Scholar 

  65. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16(1):11–26

    Article  CAS  PubMed  Google Scholar 

  66. Tsui V, Case DA (2000) Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers 56(4):275–291

    Article  CAS  PubMed  Google Scholar 

  67. Lee MS, Salsbury FR Jr, Brooks CL III (2002) Novel generalized Born methods. J Chem Phys 116(24):10606–10614

    Article  CAS  Google Scholar 

  68. Kralj S, Hodošček M, Podobnik B, Kunej T, Bren U, Janežič D et al (2021) Molecular dynamics simulations reveal interactions of an IgG1 antibody with selected Fc receptors. Front Chem 9:705931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW et al (2009) Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model 49(2):444–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu X, IJzerman AP, van Westen GJ (2021) Computational approaches for de novo drug design: past, present, and future. Artif Neural Netw 190:139–165

    Article  Google Scholar 

  71. Fischer T, Gazzola S, Riedl R (2019) Approaching target selectivity by de novo drug design. Expert Opin Drug Discovery 14(8):791–803

    Article  CAS  Google Scholar 

  72. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4(8):649–663

    Article  CAS  PubMed  Google Scholar 

  73. Moon JB, Howe WJ (1991) Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins 11(4):314–328

    Article  CAS  PubMed  Google Scholar 

  74. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28(7):849–857

    Article  CAS  PubMed  Google Scholar 

  75. Böhm H-J (1992) LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J Comput Aided Mol Des 6(6):593–606

    Article  PubMed  Google Scholar 

  76. Bharatam PV, Khanna S, Francis SM (2008) Modeling and informatics in drug design. In: Preclinical development handbook: ADME and biopharmaceutical properties, vol 29. Wiley, Hoboken, pp 1–46

    Google Scholar 

  77. Rotstein SH, Murcko MA (1993) GroupBuild: a fragment-based method for de novo drug design. J Med Chem 36(12):1700–1710

    Article  CAS  PubMed  Google Scholar 

  78. Gillet V, Johnson AP, Mata P, Sike S, Williams P (1993) SPROUT: a program for structure generation. J Comput Aided Mol Des 7(2):127–153

    Article  CAS  PubMed  Google Scholar 

  79. Alig L, Alsenz J, Andjelkovic M, Bendels S, Bénardeau A, Bleicher K et al (2008) Benzodioxoles: novel cannabinoid-1 receptor inverse agonists for the treatment of obesity. J Med Chem 51(7):2115–2127

    Article  CAS  PubMed  Google Scholar 

  80. Siezen RJ, de Vos WM, Leunissen JA, Dijkstra BW (1991) Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng 4(7):719–737

    Article  CAS  PubMed  Google Scholar 

  81. Sutcliffe MJ, Haneef I, Carney D, Blundell T (1987) Knowledge based modelling of homologous proteins, Part I: three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng 1(5):377–384

    Article  CAS  PubMed  Google Scholar 

  82. Khare N, Maheshwari SK, Rizvi SMD, Albadrani HM, Alsagaby SA, Alturaiki W et al (2022) Homology modelling, molecular docking and molecular dynamics simulation studies of CALMH1 against secondary metabolites of Bauhinia variegata to treat Alzheimer’s disease. Brain Sci 12(6):770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    Article  CAS  PubMed  Google Scholar 

  84. Bates PA, Kelley LA, MacCallum RM, Sternberg MJ (2001) Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 45(S5):39–46

    Article  Google Scholar 

  85. Lewis D, Lake B, Dickins M, Ueng Y-F, Goldfarb P (2003) Homology modelling of human CYP1A2 based on the CYP2C5 crystallographic template structure. Xenobiotica 33(3):239–254

    Article  CAS  PubMed  Google Scholar 

  86. Muegge I, Heald SL, Brittelli D (2001) Simple selection criteria for drug-like chemical matter. J Med Chem 44(12):1841–1846

    Article  CAS  PubMed  Google Scholar 

  87. Mosberg HI (1999) Complementarity of δ opioid ligand pharmacophore and receptor models. Peptide Sci 51(6):426–439

    Article  CAS  Google Scholar 

  88. de Groot MJ, Ekins S (2002) Pharmacophore modeling of cytochromes P450. Adv Drug Deliv Rev 54(3):367–383

    Article  PubMed  Google Scholar 

  89. Day BW (2000) Mutants yield a pharmacophore model for the tubulin–paclitaxel binding site. Trends Pharmacol Sci 21(9):321–323

    Article  CAS  PubMed  Google Scholar 

  90. Kalva S, Vinod D, Saleena LM (2014) Combined structure-and ligand-based pharmacophore modeling and molecular dynamics simulation studies to identify selective inhibitors of MMP-8. J Mol Model 20(5):1–18

    Article  CAS  Google Scholar 

  91. Summa V, Petrocchi A, Matassa VG, Gardelli C, Muraglia E, Rowley M et al (2006) 4, 5-Dihydroxypyrimidine carboxamides and N-alkyl-5-hydroxypyrimidinone carboxamides are potent, selective HIV integrase inhibitors with good pharmacokinetic profiles in preclinical species. J Med Chem 49(23):6646–6649

    Article  CAS  PubMed  Google Scholar 

  92. Hansch C, Grieco C, Silipo C, Vittoria A (1977) Quantitative structure-activity relationship of chymotrypsin-ligand interactions. J Med Chem 20(11):1420–1435

    Article  CAS  PubMed  Google Scholar 

  93. Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev 108(5):1614–1641

    Article  CAS  PubMed  Google Scholar 

  94. Luo M, Wang XS, Roth BL, Golbraikh A, Tropsha A (2014) Application of quantitative structure–activity relationship models of 5-HT1A receptor binding to virtual screening identifies novel and potent 5-HT1A ligands. J Chem Inf Model 54(2):634–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH (2018) QSAR-based virtual screening: advances and applications in drug discovery. Front Pharmacol 9:1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Heidari Z, Roe DR, Galindo-Murillo R, Ghasemi JB, Cheatham TE III (2016) Using wavelet analysis to assist in identification of significant events in molecular dynamics simulations. J Chem Inf Model 56(7):1282–1291

    Article  CAS  PubMed  Google Scholar 

  97. Berger A, Linderstrøm-Lang K (1957) Deuterium exchange of poly-DL-alanine in aqueous solution. Arch Biochem Biophys 69:106–118

    Article  CAS  PubMed  Google Scholar 

  98. Wolf A, Kirschner KN (2013) Principal component and clustering analysis on molecular dynamics data of the ribosomal L11 23S subdomain. J Mol Model 19(2):539–549

    Article  CAS  PubMed  Google Scholar 

  99. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676

    Article  CAS  PubMed  Google Scholar 

  100. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Segall M (2014) Advances in multiparameter optimization methods for de novo drug design. Expert Opin Drug Discovery 9(7):803–817

    Article  Google Scholar 

  105. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):1–13

    Article  Google Scholar 

  106. Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R (2014) ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res 42(W1):W53–WW8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug Deliv Rev 54(3):355–366

    Article  CAS  PubMed  Google Scholar 

  109. Sander T, Freyss J, von Korff M, Rufener C (2015) DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55(2):460–473

    Article  CAS  PubMed  Google Scholar 

  110. Myshkin E, Brennan R, Khasanova T, Sitnik T, Serebriyskaya T, Litvinova E et al (2012) Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical-histopathology annotations. Chem Biol Drug Des 80(3):406–416

    Article  CAS  PubMed  Google Scholar 

  111. Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T et al (2005) MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J Med Chem 48(22):6970–6979

    Article  CAS  PubMed  Google Scholar 

  112. T’jollyn H, Boussery K, Mortishire-Smith R, Coe K, De Boeck B, Van Bocxlaer J et al (2011) Evaluation of three state-of-the-art metabolite prediction software packages (Meteor, MetaSite, and StarDrop) through independent and synergistic use. Drug Metab Dispos 39(11):2066–2075

    Article  PubMed  Google Scholar 

  113. Timmermans P, Brands A, Van Zwieten P (1977) Lipophilicity and brain disposition of clonidine and structurally related imidazolidines. Naunyn Schmiedebergs Arch Pharmacol 300(3):217–226

    Article  CAS  PubMed  Google Scholar 

  114. Hinderling PH, Schmidlin O, Seydel JK (1984) Quantitative relationships between structure and pharmacokinetics of beta-adrenoceptor blocking agents in man. J Pharmacokinet Biopharm 12(3):263–287

    Article  CAS  PubMed  Google Scholar 

  115. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1-3):3–25

    Article  CAS  Google Scholar 

  116. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1(1):55–68

    Article  CAS  PubMed  Google Scholar 

  117. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  CAS  PubMed  Google Scholar 

  118. Egan WJ, Merz KM, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43(21):3867–3877

    Article  CAS  PubMed  Google Scholar 

  119. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79(8):2554–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Aoyama T, Suzuki Y, Ichikawa H (1989) Neural networks applied to pearmaceutical problems. I. Method and application to decision making. Chem Pharm Bull(Tokyo) 37(9):2558–2560

    Article  CAS  Google Scholar 

  121. Zhu H (2020) Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol 60:573

    Article  CAS  PubMed  Google Scholar 

  122. Zheng W, Tropsha A (2000) Novel variable selection quantitative structure− property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci 40(1):185–194

    Article  CAS  PubMed  Google Scholar 

  123. Burbidge R, Trotter M, Buxton B, Holden S (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 26(1):5–14

    Article  CAS  PubMed  Google Scholar 

  124. Sprague B, Shi Q, Kim MT, Zhang L, Sedykh A, Ichiishi E et al (2014) Design, synthesis and experimental validation of novel potential chemopreventive agents using random forest and support vector machine binary classifiers. J Comput Aided Mol Des 28(6):631–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ajay A, Walters WP, Murcko MA (1998) Can we learn to distinguish between “drug-like” and “nondrug-like” molecules? J Med Chem 41(18):3314–3324

    Article  CAS  PubMed  Google Scholar 

  126. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2008) The graph neural network model. IEEE Trans Neural Netw 20(1):61–80

    Article  PubMed  Google Scholar 

  127. Kearnes S, McCloskey K, Berndl M, Pande V, Riley P (2016) Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des 30(8):595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We sincerely thank funding agencies ICMR (File No. 5/13/79/2020/NCD-III), AICTE (File No. 8-125/FDC/RPS (POLICY-1)/2019-20), and RGUHS (Project code: 19PHA339) for their financial and moral support. We are also grateful to the management and staff of Acharya Institutes and College of Pharmaceutical Sciences of Dayananda Sagar University for their constant support and encouragement.

Conflict of Interest

The corresponding author on behalf of all authors declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Raghavendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raghavendra, N.M. et al. (2023). Designing Studies in Pharmaceutical and Medicinal Chemistry. In: Jagadeesh, G., Balakumar, P., Senatore, F. (eds) The Quintessence of Basic and Clinical Research and Scientific Publishing. Springer, Singapore. https://doi.org/10.1007/978-981-99-1284-1_9

Download citation

Publish with us

Policies and ethics