Skip to main content

Extra Ordinary Properties of Graphene

  • Chapter
  • First Online:
Graphene

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The first two-dimensional atomic crystal is graphene. Before the discovery of graphene and other free-standing two-dimensional atomic crystals, it was widely believed that two-dimensional materials did not exist. Graphene is relatively new but among the most extensively studied materials because of its several promising properties. The distinguishing feature of graphene is the peculiar makeup of its charge carriers. By starting with the Dirac equation rather than the Schrödinger equation, one can more easily and naturally characterise its charge carriers, which resemble relativistic particles. Due to its outstanding qualities, graphene is a strong contender for use in upcoming electrical components such as spin-valve and ultra-sensitive gas sensors, single-electron transistors, and ballistic transistors. This chapter presents the properties of graphene, including mechanical, chemical, thermal, electrical, magnetic, and biological.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, C., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Google Scholar 

  2. Ovid’Ko, I.A.: Mechanical properties of graphene. Rev. Adv. Mater. Sci. 34(1), 1–11 (2013)

    Google Scholar 

  3. Faber, K.T., Evans, A.G.: Crack deflection processes—I. Theory. Acta Metall. 31(4), 565–576 (1983)

    Google Scholar 

  4. Atif, R., Shyha, I., Inam, F.: Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites—a review. Polymers 8(8), 281 (2016)

    Article  Google Scholar 

  5. Corcione, C.E., Freuli, F., Maffezzoli, A.: The aspect ratio of epoxy matrix nanocomposites reinforced with graphene stacks. Polym. Eng. Sci. 53(3), 531–539 (2013)

    Article  Google Scholar 

  6. Ramos-Galicia, L., et al.: Improved performance of an epoxy matrix as a result of combining graphene oxide and reduced graphene. Int. J. Polym. Sci. 2013, (2013)

    Google Scholar 

  7. Li, Z., et al.: The role of functional groups on graphene oxide in epoxy nanocomposites. Polymer 54(21), 5821–5829 (2013)

    Article  Google Scholar 

  8. Liu, W., et al.: Simultaneous catalysing and reinforcing effects of imidazole-functionalised Graphene in anhydride-cured epoxies. J. Mater. Chem. 22(35), 18395–18402 (2012)

    Article  Google Scholar 

  9. Yang, H., et al.: Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. J. Mater. Chem. 19(46), 8856–8860 (2009)

    Article  Google Scholar 

  10. Naebe, M., et al.: Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci. Rep. 4(1), 1–7 (2014)

    Article  Google Scholar 

  11. Qi, B., et al.: Mechanical and thermal properties of epoxy composites containing graphene oxide and liquid crystalline epoxy. Fibers Polym. 15(2), 326–333 (2014)

    Article  Google Scholar 

  12. Ren, F., et al.: In situ polymerisation of graphene oxide and cyanate ester–epoxy with enhanced mechanical and thermal properties. Appl. Surf. Sci. 316, 549–557 (2014)

    Article  ADS  Google Scholar 

  13. Qi, B., et al.: Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide. Express Polym. Lett. 8(7), (2014)

    Google Scholar 

  14. Lu, S., et al.: Epoxy nanocomposites filled with thermotropic liquid crystalline epoxy grafted graphene oxide. RSC Adv. 3(23), 8915–8923 (2013)

    Article  ADS  Google Scholar 

  15. Shen, X.-J., et al.: The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins. Compos. Sci. Technol. 72(13), 1581–1587 (2012)

    Article  Google Scholar 

  16. Bao, C., et al.: In situ preparation of functionalised graphene oxide/epoxy nanocomposites with effective reinforcements. J. Mater. Chem. 21(35), 13290–13298 (2011)

    Article  Google Scholar 

  17. Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater Sci. 90, 75–127 (2017)

    Article  Google Scholar 

  18. Zhang, P., et al.: Fracture toughness of Graphene. Nat Commun 5, 3782 (2014)

    Article  ADS  Google Scholar 

  19. Blees, M.K., et al.: Graphene kirigami. Nature 524(7564), 204–207 (2015)

    Article  ADS  Google Scholar 

  20. Tohei, T., et al.: Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys. Rev. B 73(6), 064304 (2006)

    Article  ADS  Google Scholar 

  21. Benedict, L.X., Louie, S.G., Cohen, M.L.: Heat capacity of carbon nanotubes. Solid State Commun. 100(3), 177–180 (1996)

    Article  ADS  Google Scholar 

  22. Pop, E., Varshney, V., Roy, A.K.: Thermal properties of graphene: fundamentals and applications. MRS Bull. 37(12), 1273–1281 (2012)

    Article  Google Scholar 

  23. Guo, Z., Zhang, D., Gong, X.-G.: Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 95(16), 163103 (2009)

    Article  ADS  Google Scholar 

  24. Yan, Z., Nika, D.L., Balandin, A.A.: Thermal properties of graphene and few-layer graphene: applications in electronics. IET Circuits Devices Syst. 9(1), 4–12 (2015)

    Article  Google Scholar 

  25. Kumar, M., et al.: Tuning the thermoelectric material’s parameter: a comprehensive review. J. Nanosci. Nanotechnol. 20(6), 3636–3646 (2020)

    Article  Google Scholar 

  26. Kusmartsev, F., et al.: Application of graphene within optoelectronic devices and transistors. In: Applied spectroscopy and the science of nanomaterials, pp. 191–221. Springer (2015)

    Chapter  Google Scholar 

  27. Yang, W., et al.: The physicochemical properties of graphene nanocomposites influence the anticancer effect. J. Oncol. 2019, (2019)

    Google Scholar 

  28. Srivastava, A., et al.: Potential of graphene-based materials to combat COVID-19: properties, perspectives, and prospects. Mater. Today Chem. 18, 100385 (2020)

    Article  Google Scholar 

  29. Yang, G., et al.: Structure of graphene and its disorders: a review. Sci. Technol. Adv. Mater. 19(1), 613–648 (2018)

    Article  Google Scholar 

  30. Zheng, R., et al.: Transport, matransportpecific heat, internal friction, and shear modulus in the charge ordered La0.25Ca0.75MnO3 manganite. J. Appl. Phys. 94(1), 514–518 (2003)

    Google Scholar 

  31. Berry, V.: Impermeability of graphene and its applications. Carbon 62, 1–10 (2013)

    Article  Google Scholar 

  32. Bunch, J.S., et al.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8(8), 2458–2462 (2008)

    Article  ADS  Google Scholar 

  33. Sun, P.Z., et al.: Limits on gas impermeability of graphene. Nature 579(7798), 229–232 (2020)

    Article  ADS  Google Scholar 

  34. Leenaerts, O., Partoens, B., Peeters, F.: Graphene: a perfect nanoballoon. Appl. Phys. Lett. 93(19), 193107 (2008)

    Article  ADS  Google Scholar 

  35. Mallineni, S.S.K., et al.: Influence of dopants on the impermeability of graphene. Nanoscale 9(18), 6145–6150 (2017)

    Article  Google Scholar 

  36. Tsetseris, L., Pantelides, S.T.: Graphene: an impermeable or selectively permeable membrane for atomic species? Carbon 67, 58–63 (2014)

    Article  Google Scholar 

  37. Su, Y., et al.: Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 5(1), 1–5 (2014)

    Article  ADS  Google Scholar 

  38. Marques, A.C.C.: Nanobiosensing Platforms with Sers and MIP-Based Technologies. Universidade NOVA de Lisboa (Portugal) (2021)

    Google Scholar 

  39. Paul, W., Sharma, C.P.: Blood compatibility and biomedical applications of graphene. Trends Biomater. Artif. Organs 25(3), 91–94 (2011)

    Google Scholar 

  40. Marzana, M., et al.: Nanocarbon for bioelectronics and biosensing. In: Nanomaterials for biocatalysis, pp. 689–714. Elsevier (2022)

    Chapter  Google Scholar 

  41. Byun, J.: Emerging frontiers of graphene in biomedicine. J. Microbiol. Biotechnol. 25(2), 145–151 (2015)

    Article  Google Scholar 

  42. Priyadarsini, S., et al.: Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostructure Chem. 8(2), 123–137 (2018)

    Article  Google Scholar 

  43. Li, D., et al.: When biomolecules meet graphene: from molecular level interactions to material design and applications. Nanoscale 8(47), 19491–19509 (2016)

    Article  Google Scholar 

  44. Yao, J., et al.: Recent advances in graphene-based nanomaterials: properties, toxicity and applications in chemistry, biology and medicine. Microchim. Acta 186(6), 1–25 (2019)

    Article  ADS  Google Scholar 

  45. Kumar, P., et al.: Antibacterial properties of graphene-based nanomaterials. Nanomaterials 9(5), 737 (2019)

    Google Scholar 

  46. Catania, F., et al.: A review on recent advancements of graphene and graphene-related materials in biological applications. Appl. Sci. 11(2), 614 (2021)

    Article  Google Scholar 

  47. Fuchs, J.-N., Goerbig, M.O.: Introduction to the physical properties of graphene. Lect. Notes 10, 11–12 (2008)

    Google Scholar 

  48. Huang, X., et al.: Graphene‐based materials: synthesis, characterisation, properties, and applications. Small 7(14), 1876–1902 (2011)

    Google Scholar 

  49. Avouris, P., Dimitrakopoulos, C.: Graphene: synthesis and applications. Mater. Today 15(3), 86–97 (2012)

    Article  Google Scholar 

  50. Abergel, D., et al.: Properties of graphene: a theoretical perspective. Adv. Phys. 59(4), 261–482 (2010)

    Article  ADS  Google Scholar 

  51. Kumar, R., et al.: Laser processing of graphene and related materials for energy storage: state of the art and future prospects. Prog. Energy Combust. Sci. 100981 (2022)

    Google Scholar 

  52. Ioniţă, M., et al.: Graphene and functionalised graphene: extraordinary prospects for nanobiocomposite materials. Compos. B Eng. 121, 34–57 (2017)

    Article  Google Scholar 

  53. Wei, W., Qu, X.: Extraordinary physical properties of functionalised graphene. Small 8(14), 2138–2151 (2012)

    Article  Google Scholar 

  54. Stolyarova, E., et al.: Observation of graphene bubbles and effective mass transport under graphene films. Nano Lett. 9(1), 332–337 (2009)

    Article  ADS  Google Scholar 

  55. Ghaffarkhah, A., et al.: Synthesis, applications, and prospects of graphene quantum dots: a comprehensive review. Small 18(2), 2102683 (2022)

    Article  Google Scholar 

  56. Tang, N., et al.: Magnetic properties of graphene. In: Spintronic 2D materials, pp. 137–161. Elsevier (2020)

    Chapter  Google Scholar 

  57. Matte, H.R., Subrahmanyam, K.S., Rao, C.N.: Novel magnetic properties of Graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J. Phys. Chem. C 113(23), 9982–9985 (2009)

    Google Scholar 

  58. Zhou, J., et al.: Tuning electronic and magnetic properties of graphene by surface modification. Appl. Phys. Lett. 95(10), 103108 (2009)

    Google Scholar 

  59. Jiang, C., et al.: Recent advances in graphene-family nanomaterials for effective drug delivery and phototherapy. Expert Opin. Drug Deliv. 18(1), 119–138 (2021)

    Article  MathSciNet  Google Scholar 

  60. Tang, Y., et al., Noble metals induced magnetic properties of Graphene. J. Magn. Magn. Mater. 323(20), 2441–2447 (2011)

    Google Scholar 

  61. Rao, C., et al.: Unusual magnetic properties of graphene and related materials. Chem. Sci. 3(1), 45–52 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Hina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hina, M. et al. (2023). Extra Ordinary Properties of Graphene. In: Subramaniam, R.T., Kasi, R., Bashir, S., Kumar, S.S.A. (eds) Graphene. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-1206-3_3

Download citation

Publish with us

Policies and ethics