Skip to main content

Diffuse Discharges Formed in an Inhomogeneous Electric Field Due to Runaway Electrons

  • Chapter
  • First Online:
Pulsed Discharge Plasmas

Abstract

Experimental results on amplitude-time and optical characteristics of diffuse discharges (DDs) in an inhomogeneous electric field and high-pressurized gases are demonstrated. The dynamics of the discharge plasma emission, the waveforms of voltage, discharge current, displacement current, and runaway electron beam (REB) current were obtained with a high temporal resolution (up to 10 ps) in various modes of DDs. It has been established that the formation of DD at high values of the reduced electric field strength is due to the generation of high-energy electrons, as well as X-ray radiation (XR) arising under the action of runaway electrons (REs). DDs, as well as REs and XR, were obtained both in a single pulse mode and repetitively pulsed one. The dynamics of discharge development in gaps with an inhomogeneous electric field strength distribution filled with helium, argon, nitrogen, SF6, and air was studied using a four-channel ICCD camera and a streak camera. It was shown that REs are generated at the initial stage of discharge development in the vicinity of the pointed cathode. Data on the possibilities of practical use of DDs are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.T.R. Wilson, The acceleration of β - particles in strong electric field such as thunderclaps. Proc. Cambr. Phil. Soc. 22, 534–538 (1925)

    Article  ADS  Google Scholar 

  2. H.A. Bethe, On the theory of penetration of fast corpuscular radiation through material. Ann. Physick 5, 325–400 (1930)

    Article  ADS  Google Scholar 

  3. J.R. Dwyer, D.M. Smith, S.A. Cummer, High-energy atmospheric physics: terrestrial gamma-ray flashes and related phenomena. Space Sci. Rev. 173(1), 133–196 (2012)

    Article  ADS  Google Scholar 

  4. Y.P. Raizer, Gas discharge physics (Berlin, Germany, Springer-Verlag GmbH, 1991)

    Book  Google Scholar 

  5. R.G. Giovanelli, Electron energies resulting from an electric field in a highly ionized gas. J Sci 40(301), 206–214 (1949)

    Google Scholar 

  6. H. Dreicer, Electron and ion runaway in a fully ionized gas II. Phys. Rev. 117(2), 329–342 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A.V. Gurevich, On the theory of runaway electrons. Sov. Phys. JETP 12(5), 904–912 (1961)

    MathSciNet  MATH  Google Scholar 

  8. R.M. Kulsrud, Y.C. Sun, N.K. Winsor, H.A. Fallon, Runaway electrons in a plasma. Phys. Rev. Lett. 31(11), 690–693 (1973)

    Article  ADS  Google Scholar 

  9. G.A. Askar'yan, Acceleration of particles by the edge field of a moving plasma tip that amplifies the electric field. Sov. J. Exp. Theor. Phy. Lett. 1, 97–99 (1965)

    Google Scholar 

  10. G.A. Askarayn, About new possibilities on particle acceleration up to high energies. Trudy FIAN 66, 66–72 (1973). ((In Russian))

    Google Scholar 

  11. A. Kozyrev, V. Kozhevnikov, N. Semeniuk, Why do electrons with “anomalous energies” appear in high-pressure gas discharges? In EPJ Web of Conf. EDP Sci 167, 01005 (2018)

    Article  Google Scholar 

  12. S. Frankel, V. Highland, T. Sloan, O. Van Dyck, W. Wales, Observation of X-rays from spark discharges in spark chamber. Nucl. Inst. Methods 44, 345–348 (1966)

    Article  ADS  Google Scholar 

  13. Stankevich Yu L., V.G. Kalinin, Fast electrons and X-radiation in the initial stage of pulse spark discharge development in air. Doklady Akademii Nauk SSSR 177(1), 72–73 (In Russian) (1967)

    Google Scholar 

  14. L.V. Tarasova, L.N. Khudyakova, T.V. Loiko, V.A. Tsukerman, Run-away electrons and X-ray of nanosecond discharges in gases at pressures 0.1–760 Torr. Tech. Phy. 44(3), 564–568 (1974) (In Russian)

    Google Scholar 

  15. L.P. Babich, T.V. Loĭko, V.A. Tsukerman, High-voltage nanosecond discharge in a dense gas at a high overvoltage with runaway electrons. Sov. Phy. Uspekhi 33, 521–540 (1990)

    Article  ADS  Google Scholar 

  16. A.V. Gurevich, K.P. Zybin, Runaway breakdown and electric discharges in thunderstorms. Phys. Usp. 44, 1119–1140 (2001)

    Article  ADS  Google Scholar 

  17. L.P. Babich, High-energy phenomena in electric discharges in dense gases: theory, experiment and natural phenomena (Futurepast, Arlington, VA, 2003)

    Google Scholar 

  18. V.F. Tarasenko, S.I. Yakovlenko, The electron runaway mechanism in dense gases and the production of high-power subnanosecond electron beams. Phys. Usp. 47, 887–905 (2004)

    Article  ADS  Google Scholar 

  19. V.F. Tarasenko, E.K. Baksht, A.G. Burachenko, I.D. Kostyrya, M.I. Lomaev, D.V. Rybka, Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure. Plasma Devices Oper. 16(4), 267–298 (2008)

    Article  ADS  Google Scholar 

  20. T. Shao, R. Wang, C. Zhang, P. Yan, Atmospheric‐pressure pulsed discharges and plasmas: mechanism, characteristics and applications. High Voltage 3(1), 14–20 (2018)

    Google Scholar 

  21. G.V. Naidis, V.F. Tarasenko, N.Y. Babaeva, M.I. Lomaev, Subnanosecond breakdown in high-pressure gases. Plasma Sour Sci Techn 27, 013001 (2018)

    Article  ADS  Google Scholar 

  22. B.N. Breizman, P. Aleynikov, E.M. Hollmann, M. Lehnen, Physics of runaway electrons in tokamaks. Nucl. Fusion 59, 083001 (2019)

    Article  ADS  Google Scholar 

  23. D. Wang, T. Namihira, Nanosecond pulsed streamer discharges: II Physics, discharge characterization and plasma processing. Plasma Sou. Sci. Techn. 29, 023001 (2020)

    Article  ADS  Google Scholar 

  24. D.A. Spong, W.W. Heidbrink, C. Paz-Soldan, X.D. Du, K.E. Thome, M.A. Van Zeeland, C. Collins, A. Lvovskiy, R.A. Moyer, M.E. Austin, D.P. Brennan, First direct observation of runaway-electron-driven whistler waves in tokamaks. Phys. Rev. Lett. 120, 155002 (2018)

    Article  ADS  Google Scholar 

  25. C. Reux, C. Paz-Soldan, P. Aleynikov, V. Bandaru, O. Ficker, S. Silburn, M. Hoelzl, S. Jachmich, N. Eidietis, M. Lehnen, S. Sridhar, Demonstration of safe termination of megaampere relativistic electron beams in tokamaks. Phys. Rev. Lett. 126, 175001 (2021)

    Article  ADS  Google Scholar 

  26. A. Chilingarian, L. Vanyan, B. Mailyan, Observation of thunderstorm ground enhancements with intense fluxes of high-energy electrons. Astropart. Phys. 48, 1–7 (2013)

    Article  ADS  Google Scholar 

  27. A.Y. Starikovskiy, N.L. Aleksandrov, M.N. Shneider, Simulation of decelerating streamers in inhomogeneous atmosphere with implications for runaway electron generation. J. Appl. Phys. 129, 063301 (2021)

    Article  ADS  Google Scholar 

  28. T. Shao, C. Zhang, Z. Niu, P. Yan, V.F. Tarasenko, E.K. Baksht, A.G. Burahenko, Y.V. Shut’ko, Diffuse discharge, runaway electron, and x-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes. Appl. Phy. Lett. 98, 021503 (2011)

    Google Scholar 

  29. V.F. Tarasenko (ed.), Runaway electrons preionized diffuse discharges (Nova Science Publishers, Inc., New York, 2014)

    Google Scholar 

  30. G.A. Mesyats, M.I. Yalandin, Nanosecond volume discharge in air initiated by a picosecond runaway electron beam. Phys. Usp. 62, 699–703 (2019)

    Article  ADS  Google Scholar 

  31. N.M. Zubarev, V.Y. Kozhevnikov, A.V. Kozyrev, G.A. Mesyats, N.S. Semeniuk, K.A. Sharypov, S.A. Shunailov, M.I. Yalandin, Mechanism and dynamics of picosecond radial breakdown of a gas-filled coaxial line. Plasma Sou. Sci. Technol. 29, 25008 (2020)

    ADS  Google Scholar 

  32. V. Tarasenko, Runaway electrons in diffuse gas discharges. Plasma Sour. Sci. Technol. 29, 034001 (2020)

    Article  ADS  Google Scholar 

  33. M.A. Gashkov, N.M. Zubarev, O.V. Zubareva, G.A. Mesyats, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, M.I. Yalandin, Compression of a runaway electron flow in an air gap with a nonuniform magnetic field. JETP Lett. 113, 370–377 (2021)

    Article  ADS  Google Scholar 

  34. D.A. Sorokin, D.V. Beloplotov, V.F. Tarasenko, E.K. Baksht, Main modes of runaway electron generation during a breakdown of high-pressure gases in an inhomogeneous electric field. Appl. Phys. Lett. 118, 224101 (2021)

    Article  ADS  Google Scholar 

  35. J.R. Dwyer, Z. Saleh, H.K. Rassoul, D. Concha, M. Rahman, V. Cooray, J. Jerauld, M.A. Uman, V.A. Rakov, A study of X-ray emission from laboratory sparks in air at atmospheric pressure. J. Geophy. Res. Atmosp. 113, D23207 (2008)

    Article  ADS  Google Scholar 

  36. P. Kochkin, C. Köhn, U. Ebert, L. Van Deursen, Analyzing x-ray emissions from meter-scale negative discharges in ambient air. Plasma Sour. Sci. Technol. 25, 044002 (2016)

    Article  ADS  Google Scholar 

  37. G.A. Mesyats, Pulsed power (Springer Science & Business Media) (2007)

    Google Scholar 

  38. Y.D. Korolev, G.A. Mesyats, Physics of pulsed breakdown in gases (URO-PRESS, Russia, chapter 5) (1998)

    Google Scholar 

  39. R.C. Noggle, E.P. Krider, J.R. Wayland, A search for X-rays from helium and air discharges at atmospheric pressure. J. Appl. Phys. 39, 4746–4748 (1968)

    Article  ADS  Google Scholar 

  40. L.V. Tarasova, L.N. Khudyakova, X-ray at pulsed discharges in air Soviet. J. Tech. Phys. 39, 1530–1533 (1969)

    Google Scholar 

  41. P. Tardiveau, N. Moreau, S. Bentaleb, C. Postel, S. Pasquiers, Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage. J. Phys. D Appl. Phys. 42, 175202 (2009)

    Article  ADS  Google Scholar 

  42. V.F. Tarasenko, G.V. Naidis, D.V. Beloplotov, I.D. Kostyrya, N. Yu Babaeva, Formation of wide streamers during a subnanosecond discharge in atmospheric-pressure air. Plasma Phy. Rep. 44, 746-753 (2018)

    Google Scholar 

  43. D.V. Beloplotov, V.F. Tarasenko, D.A. Sorokin, M.I. Lomaev, Formation of ball streamers at a subnanosecond breakdown of gases at a high pressure in a nonuniform electric field. JETP Lett. 106, 653–658 (2017)

    Article  ADS  Google Scholar 

  44. U. Ebert, C. Montijn, T.M. Briels, W. Hundsdorfer, B. Meulenbroek, A. Rocco, E.M. van Veldhuizen, The multiscale nature of streamers. Plasma Sources Sci. Technol. 15(2), S118 (2006)

    Article  Google Scholar 

  45. Starikovskiy, A. Yu, Fast ionization wave development in atmospheric-pressure air. IEEE Trans. Plasma Sci. 39, 2602–2603 (2011)

    Google Scholar 

  46. T. Namihira, D. Wang, S. Katsuki, R. Hackam, H. Akiyama, Propagation velocity of pulsed streamer discharges in atmospheric air. IEEE Trans. Plasma Sci. 31, 1091–1094 (2003)

    Article  ADS  Google Scholar 

  47. F. Pechereau, P. Le Delliou, J. Jansky, P. Tardiveau, S. Pasquiers, A. Bourdon, Large conical discharge structure of an air discharge at atmospheric pressure in a point-to-plane geometry. IEEE Trans. Plasma Sci. 42, 2346–2347 (2014)

    Article  ADS  Google Scholar 

  48. N.Y. Babaeva, G.V. Naidis, Simulation of subnanosecond streamers in atmospheric-pressure air: effects of polarity of applied voltage pulse. Phys. Plasmas 23, 083527 (2016)

    Article  ADS  Google Scholar 

  49. T.L. Chng, A. Brisset, P. Jeanney, S.M. Starikovskaia, I.V. Adamovich, P. Tardiveau, Electric field evolution in a diffuse ionization wave nanosecond pulse discharge in atmospheric pressure air. Plasma Sour. Sci. Techn. 28, 09LT02 (2019)

    Google Scholar 

  50. D.V. Beloplotov, M.I. Lomaev, D.A. Sorokin, V.F. Tarasenko, Displacement current during the formation of positive streamers in atmospheric pressure air with a highly inhomogeneous electric field. Phys. Plasmas 25, 083511 (2018)

    Article  ADS  Google Scholar 

  51. D.V. Beloplotov, V.F. Tarasenko, M.I. Lomaev, D.A. Sorokin, Experimental determination of the generation moment of runaway electrons. IEEE Trans. Plasma Sci. 47, 4521–4524 (2019)

    Article  ADS  Google Scholar 

  52. D.V. Beloplotov, V.F. Tarasenko, V.A. Shklyaev, D.A. Sorokin, On the mechanism of the generation of runaway electrons after a breakdown of a gap. JETP Lett. 113, 129–134 (2021)

    Article  ADS  Google Scholar 

  53. N.V. Belkin, V.A. Tsukerman, E.A. Peliks, N.I. Komyak, Kvant-150, a portable pulse x-rays apparatus. Prib. Tekh. Eksp. 1, 210–211 (1975) (In Russian)

    Google Scholar 

  54. M.I. Yalandin, V.G. Shpak, Compact high-power subnanosecond repetitive-pulse generators (review). Instr. Exper. Techn. 44, 285–310 (2001)

    Google Scholar 

  55. S.N. Rukin, Pulsed power technology based on semiconductor opening switches. Rev. Sci. Instrum. 91, 011501 (2020)

    Article  ADS  Google Scholar 

  56. V.P. Gubanov, A.V. Gunin, O.B. Kovalchuk, V.O. Kutenkov, I.V. Romanchenko, V.V. Rostov, Effective transformation of the energy of highvoltage pulses into high-frequency oscillations using a saturated-ferrite-loaded transmission line. Tech Phys. Lett. 35, 626–628 (2009)

    Article  ADS  Google Scholar 

  57. V.M. Efanov, M.V. Efanov, A.V. Komashko, A.V. Kirilenko, P.M. Yarin, S.V. Zazoulin, (Ultra-Wideband, Short Pulse Electromagnetics 9. Part 5. Springer) (2010)

    Google Scholar 

  58. A.G. Lyublinsky, S.V. Korotkov, Y.V. Aristov, D.A. Korotkov, Pulse power nanosecond-range DSRD-based generators for electric discharge technologies. IEEE Trans. Plasma Sci. 41, 2625–2629 (2013)

    Article  ADS  Google Scholar 

  59. E.W. Müller, Field ion microscopy. Science 149(3684), 591–601 (1965)

    Article  ADS  Google Scholar 

  60. A.N. Tkachev, S.I. Yakovlenko, The mechanism of electron runaway in a gas and a criterion of the self-sustained discharge initiation. Tech. Phys. Lett. 29, 683–686 (2003)

    Article  ADS  Google Scholar 

  61. V. Tarasenko, E. Baksht, V. Kuznetsov, Victor Panarin, Victor Skakun, Eduard Sosnin, Dmitry Beloplotov, Corona with streamers in atmospheric pressure air in a highly inhomogeneous electric field. J. Atmosp. Sci. Res. 03(4), 28–37 (2020)

    Google Scholar 

  62. L.B. Loeb, Basic processes of gaseous electronics (University of California press, USA, 2020)

    MATH  Google Scholar 

  63. A.V. Kozyrev, V.F. Tarasenko, E.K. Baksht, Y.V. Shut’ko, Soft X-ray generation and its role in breakdown of air gap at elevated pressures. Techn. Phys. Lett. 37, 1054–1057 (2011)

    Google Scholar 

  64. V.F. Tarasenko, E.K. Baksht, A.G. Burachenko, M.I. Lomaev, Characteristic radiation of nitrogen under subnanosecond breakdown in a highly nonuniform electric field near the positive-polarity electrode. Plasma Phys. Rep. 43, 792–795 (2017)

    Article  ADS  Google Scholar 

  65. C.V. Nguyen, A.P.J. Van Deursen, E.J.M. Van Heesch, G.J.J. Winands, A.J.M. Pemen, X-ray emission in streamer-corona plasma. J. Phys. D Appl. Phys. 43, 025202 (2009)

    Article  ADS  Google Scholar 

  66. Y. Zhu, C. Chen, J. Shi, W. Shangguan, A novel simulation method for predicting ozone generation in corona discharge region. Chem. Eng. Sci. 227, 115910 (2020)

    Article  Google Scholar 

  67. M. Erofeev, M. Lomaev, V. Ripenko, M. Shulepov, D. Sorokin, V. Tarasenko, Generators of atmospheric pressure diffuse discharge plasma and their use for surface modification. Plasma 2, 27–38 (2019)

    Article  Google Scholar 

  68. M. Erofeev, V. Ripenko, V. Tarasenko, Adhesion of copper surface treated by runaway electron preionized diffuse discharge (In IEEE Conference Proceedings: 7th International Congress on Energy Fluxes and Radiation Effects. September 14–26, Tomsk, Russia). Art. no. C3-P-037102 (2020)

    Google Scholar 

  69. C. Zhang, M.V. Erofeev, Z. Fang, M.A. Shulepov, Z. Zhou, V.F. Tarasenko, T. Shao, Modification of copper surface by runaway electrons preionized diffuse discharges at atmospheric pressure. Laser Part Beams 34, 202–209 (2016)

    Article  ADS  Google Scholar 

  70. V.I. Erofeev, S.N. Dzhalilova, M.V. Erofeev, V.S. Ripenko, V.P. Reschetilowski, Conversion of the propane-butane fraction into arenes on MFI Zeolites modified by zinc oxide and activated by low-temperature plasma. Molecules 25, 2704 (2020)

    Article  Google Scholar 

  71. A.G. Korotaev, D.V. Grigoryev, A.V. Voitsekhovskii, K.A. Lozovoy, V.F. Tarasenko, V.S. Ripenko, M.A. Shulepov, M.V. Erofeev, M.V. Yakushev, S.A. Dvoretskii, N.N. Mikhailov, V.S. Varavin, The relaxation of electrophysical properties HgCdTe epitaxial films affected by plasma of high frequency nanosecond volume discharge in atmospheric-pressure air. Surf. Coat. Technol. 387, 125527 (2020)

    Article  Google Scholar 

  72. H.M. Von Bergmann, V. Hasson, D. Preussler, Pulsed corona excitation of high‐power UV nitrogen lasers at pressures of 0–3 bar. Appl. Phy. Lett. 27, 553–555 (1975)

    Google Scholar 

  73. A.N. Panchenko, D.A. Sorokin, V.F. Tarasenko, Gas lasers pumped by runaway electrons preionized diffuse discharge. Prog. Quantum Electron. 76, 100314 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Tarasenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beloplotov, D., Sorokin, D., Tarasenko, V. (2023). Diffuse Discharges Formed in an Inhomogeneous Electric Field Due to Runaway Electrons. In: Shao, T., Zhang, C. (eds) Pulsed Discharge Plasmas. Springer Series in Plasma Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1141-7_10

Download citation

Publish with us

Policies and ethics