Skip to main content

Water Segmentation via Asymmetric Multiscale Interaction Network

  • Conference paper
  • First Online:
Digital Multimedia Communications (IFTC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1766))

  • 477 Accesses

Abstract

It is important to observe and split water region to help acquire the water quality and supervise water environment. Water segmentation is a task to separate water region from images. Due to the specular nature of the water surface, various types of reflections usually appear on the water surface, which can change significantly with weather and lighting changes, it is difficult for general segmentation to work. According to the characteristics of waters, i.e. wide area and reflection, we propose a asymmetric interaction module (AIM) converge the features to a larger receptive field. Further, with this powerful module, we design the asymmetric multiscale interaction network, which can maintain the features of each scale and reassign the weights of features at different scales. We conduct extensive experiments on Hubei water dataset we constructed, The results show the framework effectively improves the accuracy of water segmentation and greatly improves the visual effect of segmentation, which is 5.9% higher in self-made dataset with advanced methods.

This work was supported by the Science and technology project innovation fund of Hubei Three Gorges Laboratory under Grant SC215002, National Natural Science Foundation of China under Grant 62072350, Grant 62171328; and the Hubei Technology Innovation Project under Grant 2019AAA045.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Z., Wang, R., Zhang, W., Hu, F., Meng, L.: Multiscale features supported DeepLabV3+ optimization scheme for accurate water semantic segmentation. IEEE Access 7, 155787–155804 (2019)

    Article  Google Scholar 

  2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  3. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  4. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019)

    Google Scholar 

  5. Wang, W., Li, X., Yang, J., Lu, T.: Mixed link networks. arXiv preprint arXiv:1802.01808 (2018)

  6. Lu, T., Wang, Y., Zhang, Y., Jiang, J., Wang, Z., Xiong, Z.: Rethinking prior-guided face super-resolution: a new paradigm with facial component prior. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  7. Wang, Y., Lu, T., Zhang, Y., Wang, Z., Jiang, J., Xiong, Z.: FaceFormer: aggregating global and local representation for face hallucination. IEEE Trans. Circuits Syst. Video Technol. (2022). https://doi.org/10.1109/TCSVT.2022.3224940

    Article  Google Scholar 

  8. Lu, T., et al.: Face hallucination via split-attention in split-attention network. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 5501–5509 (2021)

    Google Scholar 

  9. Wang, Y., Lu, T., Zhang, Y., Fang, W., Wu, Y., Wang, Z.: Cross-task feature alignment for seeing pedestrians in the dark. Neurocomputing 462, 282–293 (2021)

    Article  Google Scholar 

  10. Wang, Y., Lu, T., Zhang, Y., Wu, Y.: Multi-scale self-calibrated network for image light source transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 252–259 (2021)

    Google Scholar 

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  12. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Itell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  13. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  14. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  15. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  16. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019)

    Google Scholar 

  17. Yao, T., Xiang, Z., Liu, J., Xu, D.: Multi-feature fusion based outdoor water hazards detection. In: 2007 International Conference on Mechatronics and Automation, pp. 652–656. IEEE (2007)

    Google Scholar 

  18. Achar, S., Sankaran, B., Nuske, S., Scherer, S., Singh, S.: Self-supervised segmentation of river scenes. In: 2011 IEEE International Conference on Robotics and Automation, pp. 6227–6232. IEEE (2011)

    Google Scholar 

  19. Kristan, M., Kenk, V.S., Kovačič, S., Perš, J.: Fast image-based obstacle detection from unmanned surface vehicles. IEEE Trans. Cybern. 46(3), 641–654 (2015)

    Article  Google Scholar 

  20. Lopez-Fuentes, L., Rossi, C., Skinnemoen, H.: River segmentation for flood monitoring. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 3746–3749. IEEE (2017)

    Google Scholar 

  21. Yuan, Y., Chen, X., Chen, X., Wang, J.: Segmentation transformer: object-contextual representations for semantic segmentation. arXiv preprint arXiv:1909.11065 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Lu, T., Zhang, Y., Fang, W., Rao, X., Zhao, M. (2023). Water Segmentation via Asymmetric Multiscale Interaction Network. In: Zhai, G., Zhou, J., Yang, H., Yang, X., An, P., Wang, J. (eds) Digital Multimedia Communications. IFTC 2022. Communications in Computer and Information Science, vol 1766. Springer, Singapore. https://doi.org/10.1007/978-981-99-0856-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0856-1_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0855-4

  • Online ISBN: 978-981-99-0856-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics