Skip to main content

Bacteriophage as Therapeutic Strategy Against Pathogenic Vibrio

  • Chapter
  • First Online:
Marine Biotechnology: Applications in Food, Drugs and Energy

Abstract

Disease outbreaks frequently impede aquaculture’s expanded expansion. Bacterial infections are one of the main issues among them. Antibiotics are frequently used in the treatment of bacterial diseases in aquaculture. Bacteriologists must create alternative control agents due to the emergence of bacteria that are resistant to standard antibiotics and bactericides as well as their possible adverse effects on the environment and human health. Therefore, new bacterial disease control methods are required. Bacteriophage therapy is thus one of the tactics. Bacteriophages, viruses that can only infect and kill highly particular types of bacteria, are potential agents with no known harmful impacts on the environment or human health. Numerous bacteriophages have been discovered to combat various fish pathogenic bacteria, and numerous studies have demonstrated how effectively they may control the spread of disease in both closed and open environments. This chapter contains details on potential bacteriophages that can fight off illnesses brought on by fish pathogenic bacteria. Bacteriophages must be bactericidal, highly specific to their host, accurately identified, free of virulence factors and stable in a variety of environmental conditions for bacteriophage therapy to be successful. With these qualities, the phage may be useful for treating vibriosis in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST, Yin J (2009) Bacteriophage plaques: theory and analysis. Methods Mol Biol 501:161–174

    Article  CAS  PubMed  Google Scholar 

  • Alanis Villa A, Kropinski AM, Abbasifar R, Griffiths MW (2012) Complete genome sequence of Vibrio parahaemolyticus bacteriophage vB_VpaM_MAR. J Virol 83(23):13138–13139

    Article  Google Scholar 

  • Alharbi SA, Wainwright M, Alahmadi TA, Salleeh HB, Faden AA, Chinnathambi A (2014) What if Fleming had not discovered penicillin? Saudi J Biol Sci 21:289–293

    Article  PubMed  PubMed Central  Google Scholar 

  • Austin B, Austin DA (2007) Bacterial fish pathogen: diseases of farmed and wild fish, 4th edn. Springer, Edinburgh

    Google Scholar 

  • Barrow PA, Soothill JS (1997) Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol 5(7):268–271

    Article  CAS  PubMed  Google Scholar 

  • Broxmeyer L, Sosnowska D, Miltner E, Chacón O, Wagner D, McGarvey J, Barletta RG, Bermudez LE (2002) Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: a model for phage therapy of intercellular bacterial pathogens. J Infect Dis 186:1155–1160

    Article  PubMed  Google Scholar 

  • Carlton RM (1999) Phage therapy: past history and future prospects. Arch Immunol Ther Exp 47:267–274

    CAS  Google Scholar 

  • Carrias A, Welch TJ, Waldbieser GC, Mead DA, Terhune JS, Liles MR (2011) Comparative genomic analysis of bacteriophages specific to the channel catfish pathogen Edwardsiella ictaluri. Virol J 8(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8(6):769–783

    Article  CAS  PubMed  Google Scholar 

  • Chauthaiwale VM, Therwath A, Deshpande VV (1992) Bacteriophage lambda as a cloning vector. Microbiol Rev 56(4):577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Xiong Z, Sun L, Yang J, Jin Q (2012) VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 40(Database Issue):D641–D645

    Article  CAS  PubMed  Google Scholar 

  • Chrisolite B, Thiyagarajan S, Alavandi SV, Abhilash EC, Kalamani N, Vijayan KK, Santiago TC (2008) Distribution of luminescent Vibrio harveyi and their bacteriophages in a commercial shrimp hatchery in South India. Aquaculture 275:13–19

    Article  Google Scholar 

  • Crothers-Stomps C, Høj L, Bourne DG, Hall MR, Owens L (2010) Isolation of lytic bacteriophage against Vibrio harveyi. J Appl Microbiol 108(5):1744–1750

    Article  CAS  PubMed  Google Scholar 

  • d’Herelle F (1917) An invisible microbe that is antagonistic to the dysentery bacillus. C R Acad Sci 165:373–375

    Google Scholar 

  • Droubogiannis S, Katharios P (2022) Genomic and biological profile of a novel bacteriophage, Vibrio phage Virtus, which improves survival of Sparus aurata larvae challenged with Vibrio harveyi. Pathogens 11:630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duckworth DH (1976) Who discovered bacteriophage. Bacteriol Rev 40(4):793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbreki M, Ross RP, Hill C, O'Mahony J, McAuliffe O, Coffey A (2014) Bacteriophages and their derivatives as biotherapeutic agents in disease prevention and treatment. J Viruses 382539, 20 p. https://doi.org/10.1155/2014/382539

  • FAO (2020) The State of World Fisheries and Aquaculture 2020. Sustainability in action. FAO, Rome

    Google Scholar 

  • Gao L, Ouyang M, Li Y, Zhang H, Zheng XF, Li HX, Rao SQ, Yang ZQ, Gao S (2022) Isolation and characterization of a lytic Vibriophage OY1 and its biocontrol effects against Vibrio spp. Front Microbiol 13:830692

    Article  PubMed  PubMed Central  Google Scholar 

  • Garbe J, Wesche A, Bunk B, Kazmierczak M, Selezska K, Rohde C, Sikorski J, Rohde M, Jahn D, Schobert M (2010) Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiol 10:301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil JJ, Hyman P (2010) Phage choice, isolation and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14. https://doi.org/10.2174/138920110790725311

    Article  Google Scholar 

  • Gillis A, Mahillon J (2014) Phages preying on Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis: past, present and future. Viruses 6:2623–2672

    Article  PubMed  PubMed Central  Google Scholar 

  • Guenther S, Huwyler D, Richard S, Loessner MJ (2009) Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol 75(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dabrowska K, Krylov VN, Balcão VM (2018) Biotechnological applications of bacteriophages: state of the art. Microbiol Res 212–213:38–58

    Article  PubMed  Google Scholar 

  • Hardies SC, Comeau AM, Serwer P, Suttle CA (2003) The complete sequence of marine bacteriophage VpV262 infecting Vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is wide spread in the marine environment. Virology 310:359–371

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves KR, Clokie MRJ (2014) Clostridium difficile phages: still difficult? Front Microbiol 5:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36(1):39–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CH, Lo CY, Liu JK, Lin CS (2000) Control of the eel. (Anguilla japonica) pathogens, Aeromonas hydrophilla and Edwardsiella tarda, by bacteriophages. J Fish Soc Taiwan 27(1):21–31

    CAS  Google Scholar 

  • Imbeault S, Parent S, Lagacé M, Uhland CF, Blais JF (2006) Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed Brook trout. J Aquat Anim Health 18(3):203–214

    Article  Google Scholar 

  • Inal JM (2003) Phage therapy: a reappraisal of bacteriophages as antibiotics. Arch Immunol Ther Exp 51:237–244

    CAS  Google Scholar 

  • Ina-Salwany MY, Al-Saari N, Mohamad A, Mursidi FA, Mohd-Aris A, Amal MNA, Kasai H, Mino S, Sawabe T, Zamri-Saad M (2019) Vibriosis in fish: a review on disease development and prevention. J Aquat Anim Health 31(1):3–22

    Article  CAS  PubMed  Google Scholar 

  • Jończyk E, Kłak M, Międzybrodzki R, Górski A (2011) The influence of external factors on bacteriophages-review. Folia Microbiol 56(3):191–200

    Article  Google Scholar 

  • Jothi R, Parthasarathy S, Ganesan K (2008) Comparison of the virulence factors and analysis of hypothetical sequences of the strains TIGR4, D39, G54 and R6 of Streptococcus pneumonia. J Comput Sci Syst Biol 1:103–118

    CAS  Google Scholar 

  • Keary R, McAuliffe O, Ross RP, Hill C, O’Mahony J (2013) Bacteriophages and their endolysins for control of pathogenic bacteria. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Badajoz, pp 1028–1040

    Google Scholar 

  • Keen EC (2015) A century of phage research: bacteriophages and the shaping of modern biology. BioEssays 37(1):6–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Jun JW, Choresca CH, Shin SP, Han JE, Park SC (2012) Complete genome sequence of a novel marine siphovirus, pVp-1, infecting Vibrio parahaemolyticus. J Virol 86(12):7013–7014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasowska A, Biegalska A, Augustyniak D, Łoś M, Richert M, Łukaszewicz M (2015) Isolation and characterization of phages infecting Bacillus subtilis. Biomed Res Int Article ID 179597. https://doi.org/10.1155/2015/179597

  • Kraushaar B, Hammerl J, Kienöl M, Heinig ML, Sperling N, Thanh MD, Reetz J, Jäckel C, Fetsch A, Hertwig S (2017) Acquisition of virulence factors in livestock-associated MRSA: lysogenic conversion of CC398 strains by virulence gene-containing phages. Sci Rep 7:2004

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapies to replace or supplement antibiotics. Trends Biotechnol 28(12):591–595

    Article  CAS  PubMed  Google Scholar 

  • Kutter E (2009) Phage host range and efficiency of plating. Methods Mol Biol 501:141–149

    Article  CAS  PubMed  Google Scholar 

  • Kutter E, Sulakvelidze A (2005) Bacteriophages: biology and applications. CRC Press, Florida

    Google Scholar 

  • Lal TM, Sano M, Hatai K, Ransangan J (2016a) Complete genome sequence of a giant Vibrio phage ValKK3 infecting Vibrio alginolyticus. Genom Data 8:837–838

    Google Scholar 

  • Lal TM, Sano M, Ransangan J (2016b) Genome characterization of a novel vibriophage VpKK5 (Siphoviridae) specific to fish pathogenic strain of Vibrio parahaemolyticus. J Basic Microbiol 56(8):872–888

    Article  CAS  PubMed  Google Scholar 

  • Lal MT, Sano M, Ransangan J (2017) Isolation and characterization of large marine bacteriophage (Myoviridae) VhKM4 infecting Vibrio harveyi. J Aquat Anim Health 29(1):26–30. https://doi.org/10.1080/08997659.2016.1249578

    Article  CAS  PubMed  Google Scholar 

  • Le TS, Southgate PC, Connor WO, Vu SV, Kurtböke DI (2020) Application of bacteriophages to control Vibrio alginolyticus contamination in oyster (Saccostrea glomerata) larvae. Antibiotics 9:415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letarov AV, Golomidova AK, Tarasyan KK (2010) Ecological basis for rational phage therapy. Acta Nat 2(1):60–71

    Article  CAS  Google Scholar 

  • Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2(2):166–173

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang Z, Zhao J, Wang L, Xie G, Huang J, Zhang Y (2021) A novel vibriophage vB_VcaS_HC containing lysogeny-related gene has strong lytic ability against pathogenic bacteria. Virol Sin 36:281–290

    Article  CAS  PubMed  Google Scholar 

  • Lin YR, Chiu CW, Chang FY, Lin CS (2012) Characterization of a new phage, termed ϕA318, which is specific for Vibrio alginolyticus. Arch Virol 157(5):917–926

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Lin YR, Lu MW, Sung PJ, Wang WH, Lin CS (2014) Genome sequences characterizing five mutations in RNA polymerase and major capsid of phages фA318 and фAs51 of Vibrio alginolyticus with different burst efficiencies. BMC Genomics 15:505

    Article  PubMed  PubMed Central  Google Scholar 

  • Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1(2):111–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Lood R, Collin M (2011) Characterization and genome sequencing of two Propionibacterium acnes phages displaying pseudolysogeny. BMC Genomics 12:198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A 106(12):4629–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ly-Chatain MH (2014) The factors affecting effectiveness of treatment in phages therapy. Front Microbiol 5:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Pacan JC, Wang Q, Xu Y, Huang X, Korenevsky A, Sabour PM (2008) Microencapsulation of bacteriophage Felix O1 into chitosan-alginate microspheres for oral delivery. Appl Environ Microbiol 74(15):4799–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahony J, Kot W, Murphy J, Ainsworth S, Neve H, Hansen LH, Heller KJ, Sørensen SJ, Hammer K, Cambillau C, Vogensen FK, ven Sinderen D (2013) Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny. Appl Environ Microbiol 79(14):4385–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur MD, Vidhani S, Mehndiratta PL (2003) Bacteriophage therapy: an alternative to conventional antibiotics. J Assoc Physicians India 51:593–596

    CAS  PubMed  Google Scholar 

  • Matsuoka S, Hashizume T, Kanzaki H, Iwamoto E, Chang PS, Yoshida T, Nakai T (2007) Phage therapy against beta-hemolytic streptococcicosis of Japanese flounder Paralichthys olivaceus. Fish Pathol 42(4):181–189

    Article  Google Scholar 

  • Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219

    Article  PubMed  Google Scholar 

  • Maulu S, Nawanzi K, Abdel-Tawwab M, Khalil HS (2021) Fish nutritional value as an approach to children’s nutrition. Front Nutr 8:780844

    Article  PubMed  PubMed Central  Google Scholar 

  • Maura D, Debarbieux L (2012) On the interactions between virulent bacteriophages and bacteria in the gut. Bacteriophage 2(4):229–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Merril CR, Scholl D, Adhya S (2006) Phage therapy. In: Calendar R (ed) The bacteriophage. Oxford University Press, New York, pp 725–741

    Google Scholar 

  • Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67(1):86–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaei MK, Nilsson AS (2015) Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One 10(3):e0118557

    Article  Google Scholar 

  • Mohamad N, Amal MNA, Yasin ISM, Saad MZ, Nasruddin NS, Al-Saari N, Mino S, Sawabe T (2019) Vibriosis in cultured marine fishes: a review. Aquaculture 512(3):1–17

    Google Scholar 

  • Morrison S, Rainnie DJ (2004) Bacteriophage therapy: an alternative to antibiotic therapy in aquaculture? Can Tech Rep Fish Aquati Sci 2532:23

    Google Scholar 

  • Musa N, Wei LS, Wee W (2008) Phenotypic and genotypic characteristics of Vibrio harveyi isolated from Black Tiger Shrimp (Penaeus monodon). World Appl Sci J 3(6):885–902

    Google Scholar 

  • Nakai T (2010) Application of bacteriophages for control of infectious diseases in aquaculture. In: Sabour PM, Griffiths MW (eds) Bacteriophages in the control of food- and waterborne pathogens. American Society for Microbiology Press, Washington, pp 257–272

    Google Scholar 

  • Nakai T, Park SC (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 153:13–18

    Article  PubMed  Google Scholar 

  • Nakai T, Sugimoto R, Park KH, Matsuoka S, Mori K, Nishioka T, Maruyama K (1999) Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis Aquat Org 37:33–41

    Article  CAS  Google Scholar 

  • Nasu H, Iida T, Sugahara T, Yamaichi Y, Park KS, Yokoyama K, Makino K, Shinagawa H, Honda T (2000) A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains. J Clin Microbiol 38(6):2156–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okano S, Yoshikawa T, de la Cruz AA, Sakata T (2007) Characterization of Vibrio harveyi bacteriophages isolated from aquaculture tanks. Mem Fac Fish Kagoshima Univ 56:55–62

    CAS  Google Scholar 

  • Okazaki R, Okazaki T, Sakabe K, Sugimoto K, Sugino A (1968) Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci U S A 59(2):598–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira J, Castilho F, Cunha A, Pereira MJ (2012) Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquac Int 20:879–910

    Article  Google Scholar 

  • Owens J, Barton MD, Hauzenroeder MW (2013) The isolation and characterization of Campylobacter jejuni bacteriophages from free range and indoor poultry. Vet Microbiol 162:144–150

    Article  PubMed  Google Scholar 

  • Park SC, Nakai T (2003) Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Dis Aquat Org 53:33–39

    Article  Google Scholar 

  • Park KH, Matsuoka S, Nakai T, Muroga K (1997) A virulent bacteriophage of Lactococcus garvieae (formerly Enterococcus seriolicida) isolated from yellowtail Seriola quinqueradiata. Dis Aquat Org 29:145–149

    Article  Google Scholar 

  • Park SC, Shimamura I, Fukunaga M, Mori KI, Nakai T (2000) Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol 66(4):1416–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phumkhachorn P, Rattanachaikunsopon P (2010) Isolation and partial characterization of a bacteriophage infecting the shrimp pathogen Vibrio harveyi. Afr J Microbiol Res 4(16):1794–1800

    Google Scholar 

  • Pirnay JP (2020) Phage therapy in the year 2035. Front Microbiol 11:1171

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad Y, Arpana KD, Sharma AK (2011) Lytic bacteriophages specific to Flavobacterium columnare rescue catfish, Clarias batrachus (Linn.) from columnaris disease. J Environ Biol 32:161–168

    PubMed  Google Scholar 

  • Ptashne M (2004) Two “what if” experiments. Cell 116(Supplement 2):S71–S72

    Article  CAS  PubMed  Google Scholar 

  • Ransangan J, Mustafa S (2009) Identification of Vibrio harveyi isolated from diseased Asian seabass Lates calcarifer by use of 16S ribosomal DNA sequencing. J Aquat Anim Health 21:150–155

    Article  PubMed  Google Scholar 

  • Rea MC, Dobson A, O’Sullivan O, Crispie F, Fouhy F, Cotter PD, Shananhan F, Kiely B, Hill C, Ross RP (2011) Effect of broad- and narrow- spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci U S A 108(Suppl. 1):4639–4644

    Article  CAS  PubMed  Google Scholar 

  • Refardt D (2011) Within-host competition determines reproductive success of temperate bacteriophages. ISME J 5:1451–1460

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezaee S, Rajabzadeh GE, Farahmand H, Zamani I (2020) Characterization of Vibrio alginolyticus bacteriophage recovered from shrimp ponds in south west of Iran. Iran J Fish Sci 19(6):3183–3200

    Google Scholar 

  • Rocha CP, Cabral HN, Marques JC, Gonçalves AMM (2022) A global overview of aquaculture food production with a focus on the activity’s development in transitional systems—the case study of a south European country (Portugal). J Mar Sci Eng 10:417

    Article  Google Scholar 

  • Rosner D, Clark J (2021) Formulations for bacteriophage therapy and the potential uses of immobilization. Pharmaceuticals 14:359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandeep K (2006) Bacteriophage precision drug against bacterial infections. Curr Sci 90(5):631–633

    Google Scholar 

  • Sillankorva S, Neubauer P, Azeredo J (2008) Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC Biotechnol 8:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva YJ, Costa L, Pereira C, Cunha Å, Calado R, Gomes NCM, Almeida A (2013) Influence of environmental variables in the efficiency of phage therapy. Microb Biotechnol 7:401–413

    Article  Google Scholar 

  • Stenholm AR, Dalsgaard I, Middelboe M (2008) Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 74(13):4070–4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens RH, de Moura Martins Lobo Dos Santos C, Zuanazzi D, de Accioly Mattos MB, Ferreira DF, Kachlany SC, Tinoco EM (2013) Prophage induction in lysogenic Aggregatibacter actinomycetemcomitans cells co-cultures with human gingival fibroblasts, and its effect on leukotoxin release. Microb Pathog 54:54–59

    Article  CAS  PubMed  Google Scholar 

  • Stevenson RMW, Airdrie DW (1984) Isolation of Yersinia ruckeri bacteriophages. Appl Environ Microbiol 74(13):4070–4078

    Google Scholar 

  • Sulakvelidze A, Alvidze Z, Morris JGJ (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surekhamol IS, Deepa GD, Somnath Pai S, Sreelakshmi B, Varghese S, Bright Singh IS (2014) Isolation and characterization of broad spectrum bacteriophages lytic to Vibrio harveyi from shrimp farms of Kerala. India Lett Appl Microbiol 58(3):197–204

    Article  CAS  PubMed  Google Scholar 

  • Switt AIM, den Bakker HC, Vongkamjan K, Hoelzer K, Warnick LD, Cummings KJ, Wiedmann M (2013) Salmonella bacteriophage diversity reflects host diversity on dairy farms. Food Microbiol 36(2):275–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Synnott AJ, Kuang Y, Kurimoto M, Yamamichi K, Iwano H, Tanji Y (2009) Isolation from sewage influent and characterization of novel Staphylococcus aureus bacteriophages with wide host range and potent lytic capability. Appl Environ Microbiol 75(13):4483–4490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan D, Gram L, Middleboe M (2014) Vibriophages and their interactions with the fish pathogen Vibrio anguillarum. Appl Environ Microbiol 80(10):3128–3140

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan CW, Rukayadi Y, Hasan H, Abdul-Mutalib NA, Jambari NN, Hara H, Thung TY, Lee E, Radu S (2021) Isolation and characterization of six Vibrio parahaemolyticus lytic bacteriophages from seafood samples. Front Microbiol 12:616548

    Article  PubMed  PubMed Central  Google Scholar 

  • Tendencia EA, de la Pena LD (2001) Antibiotic resistance of bacteria from shrimp ponds. Aquaculture 195:193–204

    Article  CAS  Google Scholar 

  • Toranzo AE, Magariños B, Romalde JL (2005) A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246:37–61

    Article  Google Scholar 

  • Verner-Jeffreys DW, Algeot M, Pond MJ, Virdee HK, Bagwell NJ, Roberts EG (2007) Furunculosis in Atlantic salmon (Salmo salar L.) is not readily controllable by bacteriophage therapy. Aquaculture 270(1–4):475–484

    Article  Google Scholar 

  • Vinod MG, Shivu MM, Umesha KR, Rajeeva BC, Krohne G, Karunasagar I, Karunasagar I (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255:117–124

    Article  CAS  Google Scholar 

  • Walakira JK, Carrias AA, Hossain MJ, Jones E, Terhune JS, Liles MR (2008) Identification and characterization of bacteriophages specific to the catfish pathogen, Edwardsiella ictaluri. J Appl Microbiol 105(6):2133–2142

    Article  CAS  PubMed  Google Scholar 

  • Weld RJ, Butts C, Heinemann JA (2004) Models of phage growth and their applicability to phage therapy. J Theor Biol 227(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Won KM, Park SI (2008) Pathogenicity of Vibrio harveyi to cultured marine fishes in Korea. Aquaculture 285:8–13

    Article  Google Scholar 

  • Wu JL, Chao WJ (1982) Isolation and application of a new bacteriophage, ET-1, which infect Edwardsiella tarda, the pathogen of edwardsiellosis. CAPD Fisheries Series 8:8–17

    Google Scholar 

  • Yamamoto A, Maegawa T (2008) Phage typing of Edwardsiella tarda from eel farm and diseased eel. Suisan Zoshoku 56:611–612

    Google Scholar 

  • Yang H, Liang L, Lin S, Jia S (2010) Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol 10:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang M, Liang Y, Huang S, Zhang J, Wang J, Chen H, Ye Y, Gao X, Wu Q, Tan Z (2020) Isolation and characterization of the novel phages vB_VpS_BA3 and vB_VpS_CA8 for lysing Vibrio parahaemolyticus. Front Microbiol 11:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu D, Wang G, Xie J, Guan S, Hu Z, Wu L (2007) Activity change of protease and amylase in digestive organs of grouper, Epinephelus coioides. J Zhejiang Univ Sci 26:246–251

    CAS  Google Scholar 

  • Zhang J, Cao Z, Xu Y, Li X, Li H, Wu F, Wang L, Cao F, Li Z, Li S, Jin L (2014) Complete genomic sequence of the Vibrio alginolyticus lytic bacteriophage PVA1. Arch Virol 159(12):3447–3451

    Article  CAS  PubMed  Google Scholar 

  • Zhou CE, Smith J, Lam M, Zemla A, Dyer MD, Slezak T (2007) MvirDB-a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence application. Nucleic Acids Res 35(Database Issue):D391–D394

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Tamrin Bin Mohamad Lal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bin Mohamad Lal, M.T., Ransangan, J. (2023). Bacteriophage as Therapeutic Strategy Against Pathogenic Vibrio. In: Shah, M.D., Ransangan, J., Venmathi Maran, B.A. (eds) Marine Biotechnology: Applications in Food, Drugs and Energy. Springer, Singapore. https://doi.org/10.1007/978-981-99-0624-6_10

Download citation

Publish with us

Policies and ethics