Skip to main content

Robotic Arm Movement Primitives Assembly Planning Method Based on BT and DMP

  • Conference paper
  • First Online:
Cognitive Systems and Information Processing (ICCSIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1787))

Included in the following conference series:

  • 677 Accesses

Abstract

To realize the skill migration and generalization of robotic arm in industrial production. We extracts 7 basic movement primitives from industrial tasks. Parameterize each primitive and build a library of movement primitives, and give the connection mode between primitives. Then, the robotic arm Behavior Tree (BT) is constructed according to the execution logic of the task. When faced with a new task, use Dynamic Movement Prmitives (DMP) to generalize the movement primitives according to the target pose. When faced with an unknown environment, control the action by selecting a specific BT. Finally, the effectiveness of the framework is verified through experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, Y., Zhao, J.: Designing human-like behaviors for anthropomorphic arm in humanoid robot NAO. Robotica 38(7), 1205–1226 (2020). https://doi.org/10.1017/S026357471900136X

    Article  Google Scholar 

  2. Fang, C., Ding, X., Zhou, C., et al.: A^2ML: a general human-inspired motion language for anthropomorphic arms based on movement primitives. Robot. Auton. Syst. 11 (2018)

    Google Scholar 

  3. Zhou, P., Zhao, X. Tao, B., Ding, H.: Combination of dynamical movement primitives with trajectory segmentation and node mapping for robot machining motion learning. IEEE/ASME Trans. Mechatron. (2022). https://doi.org/10.1109/TMECH.2022.3196036

  4. Zhang, Y., Yang, C.: Automatic regrouping of trajectories based on classification and regression tree. Int. J. Modell. Identif. Control 35(3), 217–225 (2021)

    Article  Google Scholar 

  5. Lioutikov, R., et al.: Learning movement primitive libraries through probabilistic segmentation. Int. J. Robot. Res. 36(8), 879–894 (2017)

    Article  Google Scholar 

  6. Kober, J., et al.: Learning movement primitive attractor goals and sequential skills from kinesthetic demonstrations. Robot. Auton. Syst. 74, 97–107 (2015)

    Article  Google Scholar 

  7. Averta, G., et al.: Exploiting upper-limb functional Principal Components for human-like motion generation of anthropomorphic robots. J. NeuroEng. Rehabil. 17(1), 1–15 (2020)

    Article  Google Scholar 

  8. Maeda, G., et al.: Probabilistic movement primitives for coordination of multiple human—robot collaborative tasks. Auton. Rob. 41, 593–612 (2017)

    Article  Google Scholar 

  9. Jankowski, J., Racca, M., Calinon, S.: From key positions to optimal basis functions for probabilistic adaptive control. IEEE Robot. Autom. Lett. 7(2), 3242–3249 (2022). https://doi.org/10.1109/LRA.2022.3146614

    Article  Google Scholar 

  10. Kim, S., Coninx, A., Doncieux, S.: From exploration to control: learning object manipulation skills through novelty search and local adaptation. North-Holland (2021)

    Google Scholar 

  11. Calinon, S., Guenter, F., Billard, A.: On learning, representing, and generalizing a task in a humanoid robot. IEEE Trans. Syst. Man Cybern. Part B 37(2), 286–298 (2007)

    Article  Google Scholar 

  12. Pantano, M., Eiband, T., Lee, D.: Capability-based frameworks for industrial robot skills: a survey (2022)

    Google Scholar 

  13. Lioutikov, R., et al.: Learning attribute grammars for movement primitive sequencing. Int. J. Robot. Res. 39(8), 027836491986827 (2019)

    Google Scholar 

  14. Scheide, E., Best, G., Hollinger, G.A.: BT learning for robotic task planning through Monte Carlo DAG search over a formal grammar. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE (2021)

    Google Scholar 

  15. Hou, M., et al.: A multi-behavior planning framework for robot guide (2022)

    Google Scholar 

  16. Bai, F., et al.: Hierarchical policy for non-prehensile multi-object rearrangement with deep reinforcement learning and Monte Carlo tree search (2021)

    Google Scholar 

  17. Gillini, G., et al.: A dual-arm mobile robot system performing assistive tasks operated via P300-based brain computer interface. Industr. Rob. 49(1), 11–20 (2022)

    Article  Google Scholar 

  18. Stepanova, K., et al.: Automatic self-contained calibration of an industrial dual-arm robot with cameras using self-contact, planar constraints, and self-observation. Elsevier BV (2022)

    Google Scholar 

  19. Beik-Mohammadi, H., et al.: Model mediated teleoperation with a hand-arm exoskeleton in long time delays using reinforcement learning. In: The 29th IEEE International Conference on Robot & Human Interactive Communication. IEEE (2020)

    Google Scholar 

  20. Koskinopoulou, M., Maniadakis, M., Trahanias, P.: Kinesthetic guidance utilizing DMP synchronization and assistive virtual fixtures for progressive automation. Robot. Int. J. Inf. Educ. Res. Robot. Artif. Intell. 38(10), 1824–1841 (2020)

    Google Scholar 

  21. Niekum, S., et al.: Learning and generalization of complex tasks from unstructured demonstrations. In: IEEE/RSJ International Conference on Intelligent Robots & Systems. IEEE (2012)

    Google Scholar 

  22. Cao, J., et al.: Generalize robot learning from demonstration to variant scenarios with evolutionary policy gradient. Front. Neurorobot. 14, 21 (2020)

    Article  Google Scholar 

  23. Gong, S., et al.: Task motion planning for anthropomorphic arms based on human arm movement primitives. Industr. Rob. Int. J. robot. Res. Appl. 47(5), 669–681 (2020)

    Google Scholar 

  24. Chang, W.C., et al.: Automatic robot assembly with eye-in-hand stereo vision. In: World Congress on Intelligent Control & Automation, pp. 914-919 (2011)

    Google Scholar 

  25. Ma, Y., et al.: Automatic precision robot assembly system with microscopic vision and force sensor. Ann. Am. Thoracic Soc. 16(3) (2019)

    Google Scholar 

  26. Lin, H.I., Chen, Y.Y., Chen, Y.Y.: Robot vision to recognize both object and rotation for robot pick-and-place operation. In: 2015 International Conference on Advanced Robotics and Intelligent Systems (ARIS). IEEE (2015)

    Google Scholar 

  27. Vrochidou, E., et al.: An autonomous grape-harvester robot: integrated system architecture. Electronics 10(9), 1056 (2021)

    Article  Google Scholar 

  28. Song, C., et al.: Robot complex motion learning based on unsupervised trajectory segmentation and movement primitives. ISA Trans. 97, 325–335 (2020)

    Article  Google Scholar 

  29. Schaal, S., et al.: Control, planning, learning, and imitation with dynamic movement primitives (2003)

    Google Scholar 

  30. Grunske, L., Lindsay, P., Yatapanage, N., Winter, K.: An automated failure mode and effect analysis based on high-level design specification with behavior trees. In: Romijn, J., Smith, G., van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 129–149. Springer, Heidelberg (2005). https://doi.org/10.1007/11589976_9

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by the “New Generation Artificial Intelligence” Key Special Project of the Guangdong Key Area Research and Development Program, “Multiple Degrees of Freedom Intelligent Body Complex Skill Autonomous Learning, Key Components and 3C Manufacturing Demonstration Application” (2021B010410002). Guangdong Provincial Key Area R&D Program (2020B0404030001) and National Natural Science Foundation of China - Youth Project “Study on Adaptive Problems and Update Mechanisms of Online Learning of Visual Ash Data Stream” micron-level real-time vision inspection technology and system research and development Floating Measurement of Tailings” (62106048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, M. et al. (2023). Robotic Arm Movement Primitives Assembly Planning Method Based on BT and DMP. In: Sun, F., Cangelosi, A., Zhang, J., Yu, Y., Liu, H., Fang, B. (eds) Cognitive Systems and Information Processing. ICCSIP 2022. Communications in Computer and Information Science, vol 1787. Springer, Singapore. https://doi.org/10.1007/978-981-99-0617-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0617-8_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0616-1

  • Online ISBN: 978-981-99-0617-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics