Skip to main content

Functionalized Mesoporous Silica-Based Nanoparticles for Theranostic Applications

  • Chapter
  • First Online:
Multifunctional And Targeted Theranostic Nanomedicines

Abstract

Mesoporous silica nanoparticles (MSNs) have gained huge attention among scientific groups by virtue of its distinct features. The monodispersity nature, tunable pore size, and surface engineering made it versatile nanocarriers in the field of pharmaceutical sciences and biomedical arena. MSNs have been exploited in bio-imaging by means of its greater stability and inherent photoluminescence features. Apart from bio-imaging, smart stimuli-responsive nanomaterials have been explored in the management of several devastating diseases specifically cancers and neurological disorders. The applicability of surface-modified MSNs provides the site-specific targeting while reducing the off-target noxious effects. The current chapter majorly covers the MSN-mediated nanotechnological approaches to showcase the significant theranostic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-FU:

5-Fluorouracil

AMF:

Alternating magnetic field

APTES:

(3-Aminopropyl) triethoxysilane

ATO:

Arsenic trioxide

ATP:

Adenosine tri-phosphate

CAP:

Capecitabine

CMC:

Critical micelle concentration

CTAB:

Cetyl trimethyl ammonium bromide

DDS:

Drug delivery systems

DNA:

Deoxyribonucleic acid

DOX:

Doxorubicin

EphA2:

Ephrin type-A receptor 2

EPR:

Enhanced permeability and retention

FA:

Folic acid

GEM:

Gemcitabine

HCC:

Hepatocellular cancer

LCST:

Lower critical solution temperature

MDR:

Multidrug resistance

MSNs:

Mesoporous silica nanoparticles

NIR:

Near infrared

O/W:

Oil in water

ORMOSIL:

Organically modified silica

PLAA:

Phospholipase A2 activating protein

PMO:

Periodic mesoporous organosilica

PNIPAM:

Poly(N-isopropylacrylamide)

PSMA:

Anti-prostrate-specific membrane antigen

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SBA:

Santa Barbara Amorphous

TAT:

Trans-activator of transcription

TEOS:

Tetraethyl orthosilicate

References

  • Abukhadra MR, Refay NM, El-Sherbeeny AM, El-Meligy MA (2020) Insight into the loading and release properties of MCM-48/biopolymer composites as carriers for 5-fluorouracil: equilibrium modeling and pharmacokinetic studies. ACS omega 20:11745–11755

    Article  Google Scholar 

  • Antonietti M, Berton B, Göltner C, Hentze HP (1998) Synthesis of mesoporous silica with large pores and bimodal pore size distribution by templating of polymer latices. Adv Mater 2:154–159

    Article  Google Scholar 

  • Asefa T, MacLachlan MJ, Grondey H, Coombs N, Ozin GA (2000) Metamorphic channels in periodic mesoporous methylenesilica. Angew Chem Int Ed 10:1808–1811

    Article  Google Scholar 

  • Attard GS, Glyde JC, Göltner CG (1995) Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 6555:366–368

    Article  Google Scholar 

  • Bagshaw SA, Pinnavaia TJ (1996) Mesoporous alumina molecular sieves. Angew Chem Int Ed Engl 10:1102–1105

    Article  Google Scholar 

  • Barbe C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G (2004) Silica particles: a novel drug-delivery system. Adv Mater 21:1959–1966

    Article  Google Scholar 

  • Beltrán-Osuna ÁA, Perilla JE (2016) Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. J Sol-Gel Sci Technol 2:480–496

    Article  Google Scholar 

  • Biswas N (2017) Modified mesoporous silica nanoparticles for enhancing oral bioavailability and antihypertensive activity of poorly water-soluble valsartan. Eur J Pharm Sci 99:152–160

    Article  CAS  PubMed  Google Scholar 

  • Caltagirone C, Bettoschi A, Garau A, Montis R (2015) Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev 14:4645–4671

    Article  Google Scholar 

  • Chang D, Gao Y, Wang L, Liu G, Chen Y, Wang T, Tao W, Mei L, Huang L, Zeng X (2016) Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. J Colloid Interface Sci 463:279–287

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Qiu X, Ouyang J, Kong J, Zhong W, Xing MM (2011b) pH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery. Biomacromolecules 10:3601–3611

    Article  Google Scholar 

  • Chen X, Xu C, He H (2019) Electrospinning of silica nanoparticles-entrapped nanofibers for sustained gentamicin release. Biochem Biophys Res Commun 4:1085–1089

    Article  Google Scholar 

  • Chen Y, Chen H, Guo L, He Q, Chen F, Zhou J, Feng J, Shi J (2010) Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 1:529–539

    Article  Google Scholar 

  • Chen Y, Chen H, Sun Y, Zheng Y, Zeng D, Li F, Zhang S, Wang X, Zhang K, Ma M, He Q (2011a) Multifunctional mesoporous composite nanocapsules for highly efficient MRI-guided high-intensity focused ultrasound cancer surgery. Angew Chem Int Ed 52:12505–12509

    Article  Google Scholar 

  • Chen Y, Yin Q, Ji X (2012) Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials 33:7126–7137

    Article  CAS  PubMed  Google Scholar 

  • Chi X, Zhang R, Zhao T, Gong X, Wei R, Yin Z, Lin H, Li D, Shan H, Gao J (2019) Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma. Nanotechnology 17:175101

    Article  Google Scholar 

  • Cui Y, Xu Q, Chow PK, Wang D, Wang CH (2013) Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 33:8511–8520

    Article  Google Scholar 

  • Datt A, El-Maazawi I, Larsen SC (2012) Aspirin loading and release from MCM-41 functionalized with aminopropyl groups via co-condensation or postsynthesis modification methods. J Phys Chem C 34:18358–18366

    Article  Google Scholar 

  • Deng Z, Zhen Z, Hu X, Wu S, Xu Z, Chu PK (2011) Hollow chitosan–silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 21:4976–4986

    Article  Google Scholar 

  • Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 1:11–18

    Article  Google Scholar 

  • Duo Y, Yang M, Du Z, Feng C, Xing C, Wu Y, Xie Z, Zhang F, Huang L, Zeng X, Chen H (2018) CX-5461-loaded nucleolus-targeting nanoplatform for cancer therapy through induction of pro-death autophagy. Acta Biomater 79:317–330

    Article  CAS  PubMed  Google Scholar 

  • Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 1:1–4

    Google Scholar 

  • Fang IJ, Slowing II, Wu KC, Lin VS, Trewyn BG (2012) Ligand conformation dictates membrane and endosomal trafficking of arginine-glycine-aspartate (RGD)-functionalized mesoporous silica nanoparticles. Chemistry–a. European Journal 25:7787–7792

    Article  Google Scholar 

  • Gai F, Zhou T, Chu G, Li Y, Liu Y, Huo Q, Akhtar F (2016) Mixed anionic surfactant-templated mesoporous silica nanoparticles for fluorescence detection of Fe 3+. Dalton Trans 2:508–514

    Article  Google Scholar 

  • Gan Q, Lu X, Yuan Y, Qian J, Zhou H, Lu X, Shi J, Liu C (2011) A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica. Biomaterials 7:1932–1942

    Article  Google Scholar 

  • Gauro R, Nandave M, Jain VK, Jain K (2021) Advances in dendrimer-mediated targeted drug delivery to the brain. J Nanopart Res 23:76. https://doi.org/10.1007/s11051-021-05175-8

  • Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 33:11613–11618

    Article  Google Scholar 

  • Han P, Ma N, Ren H, Xu H, Li Z, Wang Z, Zhang X (2010) Oxidation-responsive micelles based on a selenium-containing polymeric superamphiphile. Langmuir 18:14414–14418

    Article  Google Scholar 

  • Hanafi-Bojd MY, Jaafari MR, Ramezanian N, Xue M, Amin M, Shahtahmassebi N, Malaekeh-Nikouei B (2015) Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. Eur J Pharm Biopharm 89:248–258

    Article  CAS  PubMed  Google Scholar 

  • Haynes T, Bougnouch O, Dubois V, Hermans S (2020) Preparation of mesoporous silica nanocapsules with a high specific surface area by hard and soft dual templating approach: application to biomass valorization catalysis. Microporous Mesoporous Mater 306:110400

    Article  CAS  Google Scholar 

  • He Q, Ma M, Wei C, Shi J (2012a) Mesoporous carbon@ silicon-silica nanotheranostics for synchronous delivery of insoluble drugs and luminescence imaging. Biomaterials 17:4392–4402

    Article  Google Scholar 

  • He X, Zhao Y, He D, Wang K, Xu F, Tang J (2012b) ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles. Langmuir 35:12909–12915

    Article  Google Scholar 

  • Heggannavar GB, Hiremath CG, Achari DD, Pangarkar VG, Kariduraganavar MY (2018) Development of doxorubicin-loaded magnetic silica–pluronic F-127 nanocarriers conjugated with transferrin for treating glioblastoma across the blood–brain barrier using an in vitro model. ACS omega 7:8017–8026

    Article  Google Scholar 

  • Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 20:3216–3251

    Article  Google Scholar 

  • Horcajada P, Ramila A, Perez-Pariente J, Vallet-Regı M (2004) Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater 1-3:105–109

    Article  Google Scholar 

  • Huang X, Teng X, Chen D, Tang F, He J (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 3:438–448

    Article  Google Scholar 

  • Huang X, Zhang F, Lee S, Swierczewska M, Kiesewetter DO, Lang L, Zhang G, Zhu L, Gao H, Choi HS, Niu G (2012) Long-term multimodal imaging of tumor draining sentinel lymph nodes using mesoporous silica-based nanoprobes. Biomaterials 17:4370–4378

    Article  Google Scholar 

  • Izquierdo-Barba I, Martinez Á, Doadrio AL, Pérez-Pariente J, Vallet-Regí M (2005) Release evaluation of drugs from ordered three-dimensional silica structures. Eur J Pharm Sci 5:365–373

    Article  Google Scholar 

  • Jain K, Gupta U, Jain NK (2014) Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur J Pharm Biopharm 87(3):500–509. https://doi.org/10.1016/j.ejpb.2014.03.015

  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 4:715–728

    Article  Google Scholar 

  • Kaneda M, Tsubakiyama T, Carlsson A, Sakamoto Y, Ohsuna T, Terasaki O, Joo SH, Ryoo R (2002) Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography. J Phys Chem B 6:1256–1266

    Article  Google Scholar 

  • Khan MA, Jain VK, Rizwanullah M, Ahmad J, Jain K (2019) PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges. Drug Discov Today 24(11):2181–2191. https://doi.org/10.1016/j.drudis.2019.09.001

  • Kim KS, Kim J, Kim DH, Hwang HS, Na K (2018) Multifunctional trastuzumab–chlorin e6 conjugate for the treatment of HER2-positive human breast cancer. Biomater Sci 5:1217–1226

    Article  Google Scholar 

  • Kresge AC, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 6397:710–712

    Article  Google Scholar 

  • Kumar B, Kulanthaivel S, Mondal A, Mishra S, Banerjee B, Bhaumik A, Banerjee I, Giri S (2017) Mesoporous silica nanoparticle-based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surf B: Biointerfaces 150:352–361

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ, Tramposch KM, Maitra A, Prasad PN (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 3:449–456

    Article  CAS  Google Scholar 

  • Kuppusamy P, Li H, Ilangovan G, Cardounel AJ, Zweier JL, Yamada K, Krishna MC, Mitchell JB (2002) Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res 1:307–312

    Google Scholar 

  • Li H, Yan W, Suo X, Peng H, Yang X, Li Z, Zhang J, Liu D (2019) Nucleus-targeted nano delivery system eradicates cancer stem cells by combined thermotherapy and hypoxia-activated chemotherapy. Biomaterials 200:1–4

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JII (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 7:2590–2605

    Article  Google Scholar 

  • Liberman A, Martinez HP, Ta CN, Barback CV, Mattrey RF, Kono Y, Blair SL, Trogler WC, Kummel AC, Wu Z (2012) Hollow silica and silica-boron nano/microparticles for contrast-enhanced ultrasound to detect small tumors. Biomaterials 20:5124–5129

    Article  Google Scholar 

  • Lim MH, Stein A (1999) Comparative studies of grafting and direct syntheses of inorganic− organic hybrid mesoporous materials. Chem Mater 11:3285–3295

    Article  CAS  Google Scholar 

  • Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 13:4834–4842

    Article  Google Scholar 

  • Liu CM, Chen GB, Chen HH, Zhang JB, Li HZ, Sheng MX, Weng WB, Guo SM (2019) Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment. Colloids Surf B: Biointerfaces 175:477–486

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang XJ (2014) pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 4:693–710

    Article  Google Scholar 

  • Liu Y, Yang G, Jin S, Xu L, Zhao CX (2020) Development of High-Drug-Loading Nanoparticles ChemPlusChem 85:2143–2157

    CAS  PubMed  Google Scholar 

  • Liu Z, Tao Z, Zhang Q, Wan S, Zhang F, Zhang Y, Wu G, Wang J (2018) YSA-conjugated mesoporous silica nanoparticles effectively target EphA2-overexpressing breast cancer cells. Cancer Chemother Pharmacol 4:687–695

    Article  Google Scholar 

  • López T, Basaldella EI, Ojeda ML, Manjarrez J, Alexander-Katz R (2006) Encapsulation of valproic acid and sodic phenytoin in ordered mesoporous SiO2 solids for the treatment of temporal lobe epilepsy. Opt Mater 1:75–81

    Article  Google Scholar 

  • Lou XW, Archer LA, Yang Z (2008) Hollow micro−/nanostructures: synthesis and applications. Adv Mater 21:3987–4019

    Article  Google Scholar 

  • Meenakshi Upreti AJ, Sethi P (2013) Tumor microenvironment and nanotherapeutics. Transl Cancer Res 4:309–319

    Google Scholar 

  • Mehrasa M, Asadollahi MA, Nasri-Nasrabadi B, Ghaedi K, Salehi H, Dolatshahi-Pirouz A, Arpanaei A (2016) Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties. Mater Sci Eng C 66:25–32

    Article  CAS  Google Scholar 

  • Meng F, Cheng R, Deng C, Zhong Z (2012) Intracellular drug release nanosystems Materials today 10:436–442

    Google Scholar 

  • Mo J, He L, Ma B, Chen T (2016) Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood–brain barrier. ACS Appl Mater Interfaces 11:6811–6825

    Article  Google Scholar 

  • Mo R, Jiang T, DiSanto R, Tai W, Gu Z (2014) ATP-triggered anticancer drug delivery Nature communications 1:1–10

    Google Scholar 

  • Mozafarinia M, Karimi S, Farrokhnia M, Esfandiari J (2021) In vitro breast cancer targeting using Trastuzumab-conjugated mesoporous silica nanoparticles: towards the new strategy for decreasing size and high drug loading capacity for drug delivery purposes in MSN synthesis. Microporous Mesoporous Mater 316:110950

    Article  CAS  Google Scholar 

  • Narayan R, Gadag S, Cheruku SP, Raichur AM, Day CM, Garg S, Manandhar S, Pai KS, Suresh A, Mehta CH, Nayak Y (2021) Chitosan-glucuronic acid conjugate coated mesoporous silica nanoparticles: a smart pH-responsive and receptor-targeted system for colorectal cancer therapy. Carbohydr Polym 261:117893

    Article  CAS  PubMed  Google Scholar 

  • Narayan R, Nayak UY, Raichur AM, Garg S (2018) Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics 3:118

    Article  Google Scholar 

  • Natarajan SK, Selvaraj S (2014) Mesoporous silica nanoparticles: importance of surface modifications and its role in drug delivery. RSC Adv 28:14328–14334

    Article  Google Scholar 

  • Newalkar BL, Komarneni S, Katsuki H (2000) Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave–hydrothermal process. Chem Commun 23:2389–2390

    Article  Google Scholar 

  • Niesz K, Yang P, Somorjai GA (2005) Sol-gel synthesis of ordered mesoporous alumina. Chem Commun 15:1986–1987

    Article  Google Scholar 

  • Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH (2005) Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process. Langmuir 4:1516–1523

    Article  Google Scholar 

  • Otsuka M, Tokumitsu K, Matsuda Y (2000) Solid dosage form preparations from oily medicines and their drug release. Effect of degree of surface-modification of silica gel on the drug release from phytonadione-loaded silica gels. J Control Release 2-3:369–384

    Article  Google Scholar 

  • Pal N, Bhaumik A (2013) Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic–inorganic hybrid and purely organic solids. Adv Colloid Interf Sci 189:21–41

    Article  Google Scholar 

  • Pan G, Jia TT, Huang QX, Qiu YY, Xu J, Yin PH, Liu T (2017) Mesoporous silica nanoparticles (MSNs)-based organic/inorganic hybrid nanocarriers loading 5-fluorouracil for the treatment of colon cancer with improved anticancer efficacy. Colloids Surf B: Biointerfaces 159:375–385

    Article  CAS  PubMed  Google Scholar 

  • Qiu K, He C, Feng W, Wang W, Zhou X, Yin Z, Chen L, Wang H, Mo X (2013) Doxorubicin-loaded electrospun poly (L-lactic acid)/mesoporous silica nanoparticles composite nanofibers for potential postsurgical cancer treatment. J Mater Chem B 36:4601–4611

    Article  Google Scholar 

  • Roy I, Kumar P, Kumar R, Ohulchanskyy TY, Yong KT, Prasad PN (2014) Ormosil nanoparticles as a sustained-release drug delivery vehicle. RSC Adv 96:53498–53504

    Article  Google Scholar 

  • Roy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J, Dougherty TJ, Prasad PN (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug− carrier system for photodynamic therapy. J Am Chem Soc 26:7860–7865

    Article  Google Scholar 

  • Roy I, Stachowiak MK, Bergey EJ (2008) Nonviral gene transfection nanoparticles: function and applications in the brain. Nanomedicine: nanotechnology. Biol Med 2:89–97

    Google Scholar 

  • Sakamoto Y, Kaneda M, Terasaki O, Zhao DY, Kim JM, Stucky G, Shin HJ, Ryoo R (2000) Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 6811:449–453

    Article  Google Scholar 

  • Sánchez T, Salagre P, Cesteros Y (2013) Ultrasounds and microwave-assisted synthesis of mesoporous hectorites. Microporous Mesoporous Mater 171:24–34

    Article  Google Scholar 

  • Schmidt HK, Geiter E, Mennig M, Krug H, Becker C, Winkler RP (1998) The sol-gel process for nano-technologies: new nanocomposites with interesting optical and mechanical properties. J Sol-Gel Sci Technol 1:397–404

    Article  Google Scholar 

  • Sharma KK, Asefa T (2007) Efficient bifunctional nanocatalysts by simple postgrafting of spatially isolated catalytic groups on mesoporous materials. Angewandte Chemie International EditionApr 16:2879–2882

    Article  Google Scholar 

  • Slowing I, Trewyn BG, Lin VS (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 46:14792–14793

    Article  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 11:1278–1288

    Article  Google Scholar 

  • Song JT, Yang XQ, Zhang XS, Yan DM, Wang ZY, Zhao YD (2015) Facile synthesis of gold nanospheres modified by positively charged mesoporous silica, loaded with near-infrared fluorescent dye, for in vivo X-ray computed tomography and fluorescence dual mode imaging. ACS Appl Mater Interfaces 31:17287–17297

    Article  Google Scholar 

  • Song SW, Hidajat K, Kawi S (2005) Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix− drug interactions. Langmuir 21:9568–9575

    Article  CAS  PubMed  Google Scholar 

  • Soni N, Jain K, Gupta U, Jain NK (2015) Controlled delivery of gemcitabine hydrochloride using mannosylated poly(propyleneimine) dendrimers. J Nanopart Res 17:458. https://doi.org/10.1007/s11051-015-3265-1

  • Soto RJ, Yang L, Schoenfisch MH (2016) Functionalized mesoporous silica via an aminosilane surfactant ion exchange reaction: controlled scaffold design and nitric oxide release. ACS Appl Mater Interfaces 3:2220–2231

    Article  Google Scholar 

  • Suthar T, Navneet, Jain K (2021) Nutraceuticals against neurodegeneration: understanding the mechanistic pathways. In: Lokhande JN, Pathak YV (eds) Nutraceuticals for aging and anti-aging: basic understanding and clinical evidence. CRC Press, ISBN: 9781003110866; pp 133–168

    Google Scholar 

  • Suthar T, Jain VK, Popli H, Jain K (2022) 12 - Nanoemulsions as effective carriers for targeting brain tumors. In: Kumar L, Pathak Y (eds) Nanocarriers for drug-targeting brain tumors. Elsevier, pp 347–363 https://doi.org/10.1016/B978-0-323-90773-6.00008-7

  • Suthar T, Patel P, Singh P, Datusalia AK, Yadav AK, Jain K (2023) Hesperidin microemulsion: Formulation optimization, characterization, and in vitro evaluation. J Drug Del Sci Tech 80(104166):1–12

    Google Scholar 

  • Taratula O, Garbuzenko OB, Chen AM, Minko T (2011) Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target 10:900–914

    Article  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 7:579–591

    Article  Google Scholar 

  • Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VS (2010) Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 18:1952–1967

    Article  Google Scholar 

  • Wang G, Otuonye AN, Blair EA, Denton K, Tao Z, Asefa T (2009) Functionalized mesoporous materials for adsorption and release of different drug molecules: a comparative study. Journal of Solid-State Chemistry 7:1649–1660

    Article  Google Scholar 

  • Wang Q, Hu W, Cai L, Huang Y, Qian Z (2017) Nanomedicines in bone cancer—from diagnostics to therapies. J Biomed Nanotechnol 8:911–930

    Article  Google Scholar 

  • Wang Y, Han N, Zhao Q, Bai L, Li J, Jiang T, Wang S (2015) Redox-responsive mesoporous silica as carriers for controlled drug delivery: a comparative study based on silica and PEG gatekeepers. Eur J Pharm Sci 72:12–20

    Article  CAS  PubMed  Google Scholar 

  • Wanka G, Hoffmann H, Ulbricht W (1994) Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 15:4145–4159

    Article  Google Scholar 

  • Watermann A, Brieger J (2017) Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nano 7:189

    Google Scholar 

  • Xie X, Li F, Zhang H, Lu Y, Lian S, Lin H, Gao Y, Jia L (2016) EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci 83:28–35

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Yang T, Yang Y, Xu C, Li F (2010) Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 27:7078–7085

    Article  Google Scholar 

  • Yamada H, Urata C, Higashitamori S, Aoyama Y, Yamauchi Y, Kuroda K (2014) Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion. ACS Appl Mater Interfaces 5:3491–3500

    Article  Google Scholar 

  • Yang KN, Zhang CQ, Wang W, Wang PC, Zhou JP, Liang XJ (2014) pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol Med 1:34–43

    Google Scholar 

  • Yang L, Yin T, Liu Y, Sun J, Zhou Y, Liu J (2016b) Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater 46:177–190

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1999) Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater 10:2813–2826

    Article  Google Scholar 

  • Yang Y, Achazi K, Jia Y, Wei Q, Haag R, Li J (2016a) Complex assembly of polymer conjugated mesoporous silica nanoparticles for intracellular pH-responsive drug delivery. Langmuirm 47:12453–12460

    Article  Google Scholar 

  • You Y, Yang L, He L, Chen T (2016) Tailored mesoporous silica nanosystem with enhanced permeability of the blood–brain barrier to antagonize glioblastoma. J Mater Chem B 36:5980–5990

    Article  Google Scholar 

  • You YZ, Kalebaila KK, Brock SL, Oupicky D (2008) Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chem Mater 10:3354–3359

    Article  Google Scholar 

  • Zhang B, Luo Z, Liu J, Ding X, Li J, Cai K (2014b) Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo. J Control Release 192:192–201

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li Y, Jimmy CY, Chen YY, Chan KM (2014a) Assembly of polyethylenimine-functionalized iron oxide nanoparticles as agents for DNA transfection with magnetofection technique. J Mater Chem B 45:7936–7944

    Article  Google Scholar 

  • Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998a) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 5350:548–552

    Article  Google Scholar 

  • Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998b) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 24:6024–6036

    Article  Google Scholar 

  • Zhao P, Li L, Zhou S, Qiu L, Qian Z, Liu X, Cao X, Zhang H (2018) TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. Mater Sci Eng C 84:108–117

    Article  CAS  Google Scholar 

  • Zhuang J, Zhou L, Tang W, Ma T, Li H, Wang X, Chen C, Wang P (2021) Tumor targeting antibody-conjugated nanocarrier with pH/thermo dual-responsive macromolecular film layer for enhanced cancer chemotherapy. Mater Sci Eng C 118:111361

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramteke, U., Kumar, V., Batheja, S., Phulmogare, G., Gupta, U. (2023). Functionalized Mesoporous Silica-Based Nanoparticles for Theranostic Applications. In: Jain, K., Jain, N.K. (eds) Multifunctional And Targeted Theranostic Nanomedicines. Springer, Singapore. https://doi.org/10.1007/978-981-99-0538-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0538-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0537-9

  • Online ISBN: 978-981-99-0538-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics