Skip to main content

Perovskite-Based Materials for Photovoltaic Applications: A Machine Learning Approach

  • Chapter
  • First Online:
Machine Learning for Advanced Functional Materials

Abstract

The future of our planet depends greatly on sustainable energy sources and environmental preservation. Our modern society’s primary energy source is fossil fuels, which emit enormous amounts of carbon dioxide and contribute significantly to global warming. Due to global concerns about the environment and the increasing demand for energy, technological advancement in renewable energy is opening up new possibilities for its use. Even today, solar energy continues to be the most abundant, inexhaustible, and clean form of renewable energy. In this context, scientists and engineers across the world are working toward the development of highly efficient and cost-effective photovoltaic devices. As we move from the first to the third generation of solar cells, although their production cost decreases, their efficiency is also reduced. In the past few years, perovskites emerged as outstanding materials for photovoltaic applications. Halide perovskites have been reported to exhibit a power efficiency of 25.5% due to their excellent defect tolerance, high optical absorption, the minimization of recombination, and long carrier diffusion lengths. Furthermore, halide perovskite materials are more affordable and easier to construct than silicon-based classic solar cells. Thus, it is of paramount significance to design advanced perovskite materials with higher photovoltaic efficiency. Although mixed lead-free and inorganic perovskites have been established as promising photovoltaic materials, their enormous composition space makes it difficult to find compositions with desired bandgap and photovoltaic parameters. The bottleneck impeding this advancement can be addressed by either (1) following a trial-and-error approach to collect enormous experimental data and designing advanced materials with desired properties leading to the development of high-efficiency photovoltaic devices or (2) combining the strengths of experimental materials science and machine learning to understand the underlying compositional and structural descriptors governing the efficiency of these devices. This chapter includes a brief discussion of perovskite materials and the developments made in the lead-free perovskite for photovoltaics. Further, this discussion will turn to the collection and analysis of materials data and extend to the descriptors used to describe the performance and properties of lead-free perovskites. The overarching aim of this chapter is to discuss how ML can be used to design advanced lead-free perovskites with desirable bandgaps and stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharya, S., & John, S. (2019). Beyond 30% conversion efficiency in silicon solar cells: A numerical demonstration. Science and Reports, 9(1), 12482. https://doi.org/10.1038/s41598-019-48981-w

    Article  ADS  Google Scholar 

  2. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r

    Article  Google Scholar 

  3. Lin, K., et al. (2018). Perovskite light-emitting diodes with external quantum efficiency exceeding 20%. Nature, 562(7726), 245–248. https://doi.org/10.1038/s41586-018-0575-3

    Article  ADS  Google Scholar 

  4. Green, M., Dunlop, E., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., & Hao, X. (2021). Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications, 29(1), 3–15. https://doi.org/10.1002/pip.3371

    Article  Google Scholar 

  5. Johnston, M. B., & Herz, L. M. (2016). Hybrid perovskites for photovoltaics: Charge-carrier recombination, diffusion, and radiative efficiencies. Accounts of Chemical Research, 49(1), 146–154. https://doi.org/10.1021/acs.accounts.5b00411

    Article  Google Scholar 

  6. Kang, J., & Wang, L.-W. (2017). High defect tolerance in lead halide perovskite CsPbBr 3. Journal of Physical Chemistry Letters, 8(2), 489–493. https://doi.org/10.1021/acs.jpclett.6b02800

    Article  Google Scholar 

  7. Chen, Y., Peng, J., Su, D., Chen, X., & Liang, Z. (2015). Efficient and balanced charge transport revealed in planar perovskite solar cells. ACS Applied Materials & Interfaces, 7(8), 4471–4475. https://doi.org/10.1021/acsami.5b00077

    Article  Google Scholar 

  8. Zhong, W., & Vanderbilt, D. (1995). Competing structural instabilities in cubic perovskites. Physical Review Letters, 74(13), 2587–2590. https://doi.org/10.1103/PhysRevLett.74.2587

    Article  ADS  Google Scholar 

  9. Ren, M., Qian, X., Chen, Y., Wang, T., & Zhao, Y. (2022). Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. Journal of Hazardous Materials, 426, 127848. https://doi.org/10.1016/j.jhazmat.2021.127848

    Article  Google Scholar 

  10. Davies, M. L. (2020). Addressing the stability of lead halide perovskites. Joule, 4(8), 1626–1627. https://doi.org/10.1016/j.joule.2020.07.025

    Article  Google Scholar 

  11. Markvart, T. (2022). Shockley: Queisser detailed balance limit after 60 years. WIREs Energy and Environment, 11(4), e430. https://doi.org/10.1002/wene.430

    Article  Google Scholar 

  12. Filip, M. R., & Giustino, F. (2018). The geometric blueprint of perovskites. Proceedings of the National Academy of Sciences, 115(21), 5397–5402. https://doi.org/10.1073/pnas.1719179115

    Article  ADS  Google Scholar 

  13. Lu, S., Zhou, Q., Ouyang, Y., Guo, Y., Li, Q., & Wang, J. (2018). Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nature Communications, 9(1), 3405. https://doi.org/10.1038/s41467-018-05761-w

    Article  ADS  Google Scholar 

  14. Wu, T., & Wang, J. (2019). Global discovery of stable and non-toxic hybrid organic-inorganic perovskites for photovoltaic systems by combining machine learning method with first principle calculations. Nano Energy, 66, 104070. https://doi.org/10.1016/j.nanoen.2019.104070

    Article  Google Scholar 

  15. Goldschmidt, V. M. (1926). Die Gesetze der Krystallochemie. Naturwissenschaften, 14(21), 477–485. https://doi.org/10.1007/BF01507527

    Article  ADS  Google Scholar 

  16. Li, C., Lu, X., Ding, W., Feng, L., Gao, Y., & Guo, Z. (2008). Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallographica Section B, 64(6), 702–707. https://doi.org/10.1107/S0108768108032734

    Article  Google Scholar 

  17. Li, C., Soh, K. C. K., & Wu, P. (2004). Formability of ABO3 perovskites. Journal of Alloys and Compounds, 372(1), 40–48. https://doi.org/10.1016/j.jallcom.2003.10.017

    Article  Google Scholar 

  18. Kumar, A., Singh, S., Mohammed, M. K. A., & Sharma, D. K. Accelerated innovation in developing high-performance metal halide perovskite solar cell using machine learning. International Journal of Modern Physics B, 0(0), 2350067. https://doi.org/10.1142/S0217979223500674

  19. Jacobs, R., Luo, G., & Morgan, D. (2019). Materials discovery of stable and nontoxic halide perovskite materials for high-efficiency solar cells. Advanced Functional Materials, 29(23), 1804354. https://doi.org/10.1002/adfm.201804354

    Article  Google Scholar 

  20. Curtarolo, S., et al. (2012). AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Computational Materials Science, 58, 227–235. https://doi.org/10.1016/j.commatsci.2012.02.002

    Article  Google Scholar 

  21. Jain, A., et al. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. https://doi.org/10.1063/1.4812323

    Article  ADS  Google Scholar 

  22. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., & Wolverton, C. (2013). Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). JOM Journal of the Minerals Metals and Materials Society, 65(11), 1501–1509. https://doi.org/10.1007/s11837-013-0755-4

    Article  Google Scholar 

  23. Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  24. Giannozzi, P., et al. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  25. Hutter, J. (2012). Car-Parrinello molecular dynamics. WIREs Computational Molecular Science, 2(4), 604–612. https://doi.org/10.1002/wcms.90

    Article  ADS  Google Scholar 

  26. Kim, C., Huan, T. D., Krishnan, S., & Ramprasad, R. (2017). A hybrid organic-inorganic perovskite dataset. Scientific Data, 4(1), 170057. https://doi.org/10.1038/sdata.2017.57

    Article  Google Scholar 

  27. Villars, P. (2007). Pearson’s crystal data: Crystal structure database for inorganic compounds. ASM International, Materials Park.

    Google Scholar 

  28. Jain, A., Hautier, G., Ong, S. P., & Persson, K. (2016). New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships. Journal of Materials Research, 31(8), 977–994. https://doi.org/10.1557/jmr.2016.80

    Article  ADS  Google Scholar 

  29. Ward, L., Agrawal, A., Choudhary, A., & Wolverton, C. (2016). A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Computational Materials, 2(1), 16028. https://doi.org/10.1038/npjcompumats.2016.28

    Article  Google Scholar 

  30. Zhang, L., He, M., & Shao, S. (2020). Machine learning for halide perovskite materials. Nano Energy, 78, 105380. https://doi.org/10.1016/j.nanoen.2020.105380

    Article  Google Scholar 

  31. Park, H., Ali, A., Mall, R., Bensmail, H., Sanvito, S., & El-Mellouhi, F. (2021). Data-driven enhancement of cubic phase stability in mixed-cation perovskites. Machine Learning: Science and Technology, 2(2), 025030. https://doi.org/10.1088/2632-2153/abdaf9

    Article  Google Scholar 

  32. Travis, W., Glover, E. N. K., Bronstein, H., Scanlon, D. O., & Palgrave, R. G. (2016). On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chemical Science, 7(7), 4548–4556. https://doi.org/10.1039/C5SC04845A

    Article  Google Scholar 

  33. Bartel, C. J., et al. (2022). New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 5(2), eaav0693. https://doi.org/10.1126/sciadv.aav0693

  34. Sun, Q., & Yin, W.-J. (2017). Thermodynamic stability trend of cubic perovskites. Journal of the American Chemical Society, 139(42), 14905–14908. https://doi.org/10.1021/jacs.7b09379

    Article  Google Scholar 

  35. Li, J., Pradhan, B., Gaur, S., & Thomas, J. (2019). Predictions and strategies learned from machine learning to develop high-performing perovskite solar cells. Advanced Energy Materials, 9(46), 1901891. https://doi.org/10.1002/aenm.201901891

    Article  Google Scholar 

  36. Baştanlar, Y., & Özuysal, M. (2014). Introduction to machine learning. In M. Yousef & J. Allmer, (Eds.), miRNomics: MicroRNA biology and computational analysis (pp. 105–128). Humana Press. https://doi.org/10.1007/978-1-62703-748-8_7

  37. Rebala, G., Ravi, A., & Churiwala, S. (2019). An introduction to machine learning. Springer International Publishing. https://books.google.co.in/books?id=u8OWDwAAQBAJ

  38. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., & Walsh, A. (2018). Machine learning for molecular and materials science. Nature, 559(7715), 547–555. https://doi.org/10.1038/s41586-018-0337-2

    Article  ADS  Google Scholar 

  39. Liu, Y., Esan, O. C., Pan, Z., & An, L. (2021). Machine learning for advanced energy materials. Energy and AI, 3, 100049. https://doi.org/10.1016/j.egyai.2021.100049

    Article  Google Scholar 

  40. Srivastava, M., Howard, J. M., Gong, T., Rebello Sousa Dias, M., & Leite, M. S. (2021). Machine learning roadmap for perovskite photovoltaics. Journal of Physical Chemistry Letters, 12(32), 7866–7877. https://doi.org/10.1021/acs.jpclett.1c01961

  41. Suryakanthi, T. (2020). Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm*. International Journal of Advanced Computer Science and Applications, 11. https://doi.org/10.14569/IJACSA.2020.0110277

  42. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451

    Article  MathSciNet  MATH  Google Scholar 

  43. Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  44. Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT Press. https://books.google.co.in/books?id=RC43AgAAQBAJ

  45. Wu, T., & Wang, J. (2020). Deep mining stable and nontoxic hybrid organic-inorganic perovskites for photovoltaics via progressive machine learning. ACS Applied Materials & Interfaces, 12(52), 57821–57831. https://doi.org/10.1021/acsami.0c10371

    Article  Google Scholar 

  46. Jao, M.-H., Chan, S.-H., Wu, M.-C., & Lai, C.-S. (2020). Element code from pseudopotential as efficient descriptors for a machine learning model to explore potential lead-free halide perovskites. Journal of Physical Chemistry Letters, 11(20), 8914–8921. https://doi.org/10.1021/acs.jpclett.0c02393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramandeep Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, R., Saini, R., Singh, J. (2023). Perovskite-Based Materials for Photovoltaic Applications: A Machine Learning Approach. In: Joshi, N., Kushvaha, V., Madhushri, P. (eds) Machine Learning for Advanced Functional Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0393-1_7

Download citation

Publish with us

Policies and ethics