Skip to main content

Potential of Machine Learning Algorithms in Material Science: Predictions in Design, Properties, and Applications of Novel Functional Materials

  • Chapter
  • First Online:
Machine Learning for Advanced Functional Materials

Abstract

The evolving field of Machine Learning (ML) and Artificial Intelligence (AI) contributed tremendously to the advancement of various branches of science and technology. Deep learning has attracted great interest from the research community of material science, because of its ability to statistically analyze a large collection of data. Along with the computational task, time efficient tools of machine learning have also been applied for the prediction of design and properties of new materials. A noticeable shift from trial and error-based laboratory approach to the modeling and simulation-based software techniques in the preparation and characterization of functional materials manifests the emergence of big data in the field of material science. The efficient algorithms enable data collection, storage with high security, fast processing, and interpretation of physically generated results. Embedding ML in material science research also provides distinctions between simulated data and experimental results. It has put the research of physical and chemical science at the forefront with the advancements in image processing, photonics, optoelectronics, and other emerging areas of material science. In this chapter, we review applications of machine learning algorithms to study experimentally obtained results of physical systems. A comprehensive study of different techniques of deep learning to design and predict new functional materials is detailed. We conclude with the discussion of future directions and challenges in the acceptability of this advanced technique to the existing vast area of material science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt, J., Marques, M. R., Botti, S., & Marques, M. A. (2019). Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials5(1), 1–36.

    Google Scholar 

  2. Pilania, G. (2021). Machine learning in materials science: From explainable predictions to autonomous design. Computational Materials Science, 193, 110360.

    Article  Google Scholar 

  3. Baldi, P., & Brunak, S. (2001). Bioinformatics: The machine learning approach. The MIT Press.

    MATH  Google Scholar 

  4. Noordik, J. H. (2004). Cheminformatics developments: History, reviews and current research. IOS Press.

    Google Scholar 

  5. Alpaydin, E. (2014). Introduction to machine learning. The MIT Press.

    MATH  Google Scholar 

  6. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning. The MIT Press.

    MATH  Google Scholar 

  7. Nguyen, H., Maeda, S.-I., & Oono, K. (2017). Semi-supervised learning of hierarchical representations of molecules using neural message passing. arXiv:1711.10168

  8. Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4, 1–58.

    Article  Google Scholar 

  9. Sammut, C., & Webb, G. I. (2017). Encyclopedia of machine learning and data mining. Springer Publishing Company.

    Book  MATH  Google Scholar 

  10. Picard, R. R., & Cook, R. D. (1984). Cross-validation of regression models. Journal of American Statistical Association, 79, 575–583.

    Article  MathSciNet  MATH  Google Scholar 

  11. Meredig, B., et al. (2018). Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery. Molecular Systems Design and Engineering, 3, 819–825.

    Article  Google Scholar 

  12. Tropsha, A., Gramatica, P., & Gombar, V. K. (2003). The importance of being earnest validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Combinatorial Science, 22, 69–77.

    Article  Google Scholar 

  13. Golbraikh, A., & Tropsha, A. (2002). Beware of q2. Journal of Molecular Graphics and Modelling, 20, 269–276.

    Article  Google Scholar 

  14. Stanev, V., et al. (2018). Machine learning modeling of superconducting critical temperature. npj Computational Materials, 4, 29.

    Google Scholar 

  15. Liu, Y., Zhao, T., Ju, W., & Shi, S. (2017). Materials discovery and design using machine learning. Journal of Materiomics, 3(3), 159–177.

    Article  Google Scholar 

  16. Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). Springer.

    Google Scholar 

  17. Pei, J. F., Cai, C. Z., Zhu, Y. M., & Yan, B. (2013). Modeling and predicting the glass transition temperature of polymethacrylates based on quantum chemical descriptors by using hybrid PSO-SVR. Macromolecular Theory and Simulations, 22(1), 52–60.

    Article  Google Scholar 

  18. Fang, S. F., Wang, M. P., Qi, W. H., & Zheng, F. (2008). Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials. Computational Materials Science, 44(2), 647–655.

    Article  Google Scholar 

  19. Paszkowicz, W., Harris, K. D. M., & Johnston, R. L. (2009). Genetic algorithms: A universal tool for solving computational tasks in materials science preface. Computational Materials Science45(1), IX–X.

    Google Scholar 

  20. Zhang, X. J., Chen, K. Z., & Feng, X. A. (2008). Material selection using an improved genetic algorithm for material design of components made of a multiphase material. Materials & Design, 29(5), 972–981.

    Article  Google Scholar 

  21. Mohn, C. E., & Kob, W. (2009). A genetic algorithm for the atomistic design and global optimisation of substitutionally disordered materials. Computational Materials Science, 45(1), 111–117.

    Article  Google Scholar 

  22. Meredig, B., Agrawal, A., Kirklin, S., Saal, J. E., Doak, J. W., Thompson, A., Zhang, K., Choudhary, A., & Wolverton, C. (2014). Combinatorial screening for new materials in unconstrained composition space with machine learning. Physical Review B89(9), 094104.

    Google Scholar 

  23. Hautier, G., Fischer, C. C., Jain, A., Mueller, T., & Ceder, G. (2010). Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chemistry of Materials, 22(12), 3762–3767.

    Article  Google Scholar 

  24. Hautier, G., Fischer, C., Ehrlacher, V., Jain, A., & Ceder, G. (2011). Data mined ionic substitutions for the discovery of new compounds. Inorganic chemistry, 50(2), 656–663.

    Article  Google Scholar 

  25. Phillips, C. L., & Voth, G. A. (2013). Discovering crystals using shape matching and machine learning. Soft Matter, 9(35), 8552–8568.

    Article  ADS  Google Scholar 

  26. Carrera, G. V., Branco, L. C., Aires-de-Sousa, J., & Afonso, C. A. (2008). Exploration of quantitative structure-property relationships (QSPR) for the design of new guanidinium ionic liquids. Tetrahedron, 64(9), 2216–2224.

    Article  Google Scholar 

  27. Farrusseng, D., Clerc, F., Mirodatos, C., & Rakotomalala, R. (2009). Virtual screening of materials using neuro-genetic approach: Concepts and implementation. Computational Materials Science, 45(1), 52–59.

    Article  Google Scholar 

  28. Raccuglia, P., Elbert, K. C., Adler, P. D., Falk, C., Wenny, M. B., Mollo, A., Zeller, M., Friedler, S. A., Schrier, J., & Norquist, A. J. (2016). Machine-learning-assisted materials discovery using failed experiments. Nature533(7601), 73–76.

    Google Scholar 

  29. Beran, G. J. (2015). A new era for ab initio molecular crystal lattice energy prediction. Angewandte Chemie International Edition, 54(2), 396–398.

    Google Scholar 

  30. Maddox, J. (1988). Crystals from first principles. Nature, 335(6187), 201–201.

    Article  ADS  Google Scholar 

  31. Curtarolo, S., Morgan, D., Persson, K., Rodgers, J., & Ceder, G. (2003). Predicting crystal structures with data mining of quantum calculations. Physical Review Letters, 91(13), 135503.

    Article  ADS  Google Scholar 

  32. Ceder, G., Morgan, D., Fischer, C., Tibbetts, K., & Curtarolo, S. (2006). Data-mining-driven quantum mechanics for the prediction of structure. MRS Bulletin, 31(12), 981–985.

    Article  Google Scholar 

  33. Fischer, C. C., Tibbetts, K. J., Morgan, D., & Ceder, G. (2006). Predicting crystal structure by merging data mining with quantum mechanics. Nature Materials, 5(8), 641–646.

    Article  ADS  Google Scholar 

  34. Liu, R., Kumar, A., Chen, Z., Agrawal, A., Sundararaghavan, V., & Choudhary, A. (2015). A predictive machine learning approach for microstructure optimization and materials design. Scientific Reports, 5(1), 1–12.

    Google Scholar 

  35. Gómez-Bombarelli, R., Aguilera-Iparraguirre, J., Hirzel, T. D., Duvenaud, D., Maclaurin, D., Blood-Forsythe, M. A., Chae, H. S., Einzinger, M., Ha, D. G., Wu, T., & Markopoulos, G. (2016). Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nature Materials15(10), 1120–1127.

    Google Scholar 

  36. Rydning, D. R. J. G. J., Reinsel, J., & Gantz, J. (2018). The digitization of the world from edge to core (p. 16). International Data Corporation.

    Google Scholar 

  37. Larrañaga, P., Atienza, D., Diaz-Rozo, J., Ogbechie, A., Puerto-Santana, C., & Bielza, C. (2018). Industrial applications of machine learning. CRC Press.

    Book  Google Scholar 

  38. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

    Google Scholar 

  39. Manning, C., & Schutze, H. (1999). Foundations of statistical natural language processing. MIT press.

    Google Scholar 

  40. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

    Google Scholar 

  41. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., & Chen, Y. (2017). Mastering the game of go without human knowledge. Nature550(7676), 354–359.

    Google Scholar 

  42. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., & Dieleman, S., (2016). Mastering the game of Go with deep neural networks and tree search. Nature529(7587), 484–489.

    Google Scholar 

  43. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., & Lillicrap, T. (2017). Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv:1712.01815

  44. Moravčík, M., Schmid, M., Burch, N., Lisý, V., Morrill, D., Bard, N., Davis, T., Waugh, K., Johanson, M., & Bowling, M. (2017). Deepstack: Expert-level artificial intelligence in heads-up no-limit poker. Science356(6337), 508–513.

    Google Scholar 

  45. Brown, N., & Sandholm, T. (2018). Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. Science, 359(6374), 418–424.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A. A., Lally, A., Murdock, J. W., Nyberg, E., Prager, J., & Schlaefer, N. (2010). Building Watson: An overview of the DeepQA project. AI Magazine31(3), 59–79.

    Google Scholar 

  47. Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160.

    Article  Google Scholar 

  48. Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., & Chatila, R. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion58, 82–115.

    Google Scholar 

  49. Morgan, D., & Jacobs, R. (2020). Opportunities and challenges for machine learning in materials science. arXiv:2006.14604

  50. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., & Kim, C. (2017). Machine learning in materials informatics: recent applications and prospects. npj Computational Materials3(1), 1–13.

    Google Scholar 

  51. Mueller, T., Kusne, A. G., & Ramprasad, R. (2016). Machine learning in materials science: Recent progress and emerging applications. Reviews in Computational Chemistry, 29, 186–273.

    Google Scholar 

  52. Sanchez-Lengeling, B., & Aspuru-Guzik, A. (2018). Inverse molecular design using machine learning: Generative models for matter engineering. Science, 361(6400), 360–365.

    Article  ADS  Google Scholar 

  53. Häse, F., Roch, L. M., & Aspuru-Guzik, A. (2019). Next-generation experimentation with self-driving laboratories. Trends in Chemistry, 1(3), 282–291.

    Article  Google Scholar 

  54. Ziatdinov, M., Dyck, O., Maksov, A., Li, X., Sang, X., Xiao, K., Unocic, R. R., Vasudevan, R., Jesse, S., & Kalinin, S. V. (2017). Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations. ACS Nano11(12), 12742–12752.

    Google Scholar 

  55. Shetty, P., & Ramprasad, R. (2021). Automated knowledge extraction from polymer literature using natural language processing. Iscience, 24(1), 101922.

    Article  ADS  Google Scholar 

  56. Batra, R., Song, L., & Ramprasad, R. (2021). Emerging materials intelligence ecosystems propelled by machine learning. Nature Reviews Materials, 6(8), 655–678.

    Article  ADS  Google Scholar 

  57. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., & Walsh, A. (2018). Machine learning for molecular and materials science. Nature, 559(7715), 547–555.

    Article  ADS  Google Scholar 

  58. Ward, L., & Wolverton, C. (2017). Atomistic calculations and materials informatics: A review. Current Opinion in Solid State and Materials Science, 21(3), 167–176.

    Article  ADS  Google Scholar 

  59. Jain, A., Hautier, G., Ong, S. P., & Persson, K. (2016). New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships. Journal of Materials Research, 31(8), 977–994.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purvi Bhatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatt, P., Singh, N., Chaudhary, S. (2023). Potential of Machine Learning Algorithms in Material Science: Predictions in Design, Properties, and Applications of Novel Functional Materials. In: Joshi, N., Kushvaha, V., Madhushri, P. (eds) Machine Learning for Advanced Functional Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0393-1_4

Download citation

Publish with us

Policies and ethics